TRIO ${ }^{\text {TM }}$ MPC- 145 SERIES

DUAL 3-AXIS MOTORIZED MICROMANIPULATOR SYSTEM

With Synthetic Fourth Diagonal Axis

OPERATION MANUAL

REv. 2.62c (20191001) (FW v2.62)

SUTTER	INSTRUMENT

One Digital Drive
Novato, CA 94949
VOICE: 415-883-O128 WEB: WWW.SUTTER.COM
FAX: 415-883-0572 EMAIL:INFO@SUTTER.COM

(The picture on the cover page shows a TRIO MPC-100 ROE/controller and two TRIO MP-845M micromanipulators (one right-handed and the other left-handed). The Sutter Instrument dPatch Headstage shown mounted on each micromanipulator are not included in the TRIO MPC-145 Series system.)

Copyright © 2019 Sutter Instrument Company. All Rights Reserved. TRIO ${ }^{\mathrm{TM}}$ is a trademark of Sutter Instrument Company.

C \in EU Declaration of Conformity

Application of Council Directives:
2014/30/EU (EMC), 2014/35/EU (LVD), and 2011/65/EU (RoHS 2)

Manufacturer's Name:	Sutter Instrument Company
Manufacturer's	One Digital Drive
Mddress: Novato, CA. 94949 USA	
	Tel: +1 415 883 0128

Sutter Instrument Company hereby declares that the equipment specified above was tested and conforms to the EU Directives and Standards listed above, and further certifies conformation to the requirements of the European Union's Restriction on Hazardous Substances in Electronic Equipment Directive 2011/65/EU (RoHS 2).

Project Engineer:

Senior Vice President
SUTTER INSTRUMENT
One Digital Drive, Novato, CA 94949 USA Phone: +14158830128 Fax: +1 4158830572 Email: info@sutter.com Web: http://www.sutter.com

DISCLAIMER

The TRIO MPC-145 series system consists of one or two electromechanical
micromanipulator devices and one TRIO MPC-100 ROE (Rotary Optical Encoder) with integrated controller. The purpose of the system is for the manipulation at the micro level of micropipettes and probes used in conjunction with a microscope. No other use is recommended.
This instrument is designed for use in a laboratory environment. It is not intended nor should it be used in human experimentation or applied to humans in any way. This is not a medical device.
Unless otherwise indicated in this manual or by Sutter Instrument Technical Support for reconfiguration, do not open or attempt to repair the instrument.
Do not allow an unauthorized and/or untrained operative to use this device.
Any misuse will be the sole responsibility of the user/owner and Sutter Instrument Company assumes no implied or inferred liability for direct or consequential damages from this instrument if it is operated or used in any way other than for which it is designed.

SAFETY WARNINGS AND PRECAUTIONS

Electrical

- Operate the TRIO MPC-100 using $110-240$ VAC., $50-60 \mathrm{~Hz}$ line voltage. This instrument is designed for use in a laboratory environment that has low electrical noise and mechanical vibration. Surge suppression is always recommended
- \downarrow NOTE: There are no user-replaceable fuses in the TRIO MPC-100 system.
- 1 The TRIO MPC-100 system's power supply consists of an external AC to DC switching power adapter. If the external power adapter is damaged due to a mains over or under voltage, it must be replaced.
electronics, reduces/eliminates electromagnetic interference, and improves the safety of the system operator. The ROE/controller provides a socket (labeled GROUND) that accepts a banana plug attached to a suitably gauged insulated wire, the other end of which (alligator clip) connects to a solid, proper ground.

Avoiding Electrical Shock and Fire-related Injury

- Always use the grounded power cord provided to connect the system's power adapter to a grounded/earthed mains outlet (3-prong). This is required to protect you from injury in the event that an electrical hazard occurs.
- Do not disassemble the system. Refer servicing to qualified personnel.
- 4 To prevent fire or shock hazard do not expose the unit to rain or moisture.

Electromagnetic Interference

To comply with FDA and CE/EU electromagnetic immunity and interference standards; and to reduce the electromagnetic coupling between this and other equipment in your lab always use the type and length of interconnect cables provided for interconnecting the electromechanical devices and ROE/controller (refer to Technical Specifications for more details).

Operational

Failure to comply with any of the following precautions may damage this device.

- This instrument is designed for operation in a laboratory environment (Pollution Degree I) that is free from mechanical vibrations, electrical noise and transients.
- \triangle DO NOT CONNECT OR DISCONNECT THE CABLES BETWEEN THE CONTROLLER AND THE MECHANICAL UNITS WHILE POWER IS ON.
Please allow at least 20 seconds after turning the unit off before disconnecting the mechanical units. Failure to do so may result in damage to the electronics.
- Operate this instrument only according to the instructions included in this manual.
- Do not operate if there is any obvious damage to any part of the instrument.
- $\$ Do not operate this instrument near flammable materials. The use of any hazardous materials with this instrument is not recommended and, if undertaken, is done so at the users' own risk.
- \triangle Do not operate if there is any obvious damage to any part of the instrument. Do not attempt to operate the instrument with the MP-845 electromechanical manipulator shipping tape in place or severe motor damage may result. When transporting the mechanical manipulator, be sure to reinstall the shipping tape (using masking tape or equivalent only) to the original locations. Failure to do this may result in damage to the motors.
- \triangle Never touch any part of the micromanipulator electromechanical device while it is in operation and moving. Doing so can result in physical injury (e.g., fingers can be caught and pinched between the moving parts of the micromanipulator).
- \If the TRIO MPC-100 system is used in a microinjection environment, please observe the following. As with most micromanipulation devices, sharp micropipettes can fly out of their holder unexpectedly. Always take precautions to prevent this from happening. Never loosen the micropipette holder chuck when the tubing is pressurized, and never point micropipette holders at yourself or others. Always wear safety glasses when using sharp glass micropipettes with pressure tubing.
- \triangle Take care to ensure no cables pass close to the MP-845 electromechanical micromanipulator within the spherical movement limits of all its axes combined.

Other

- Retain the original packaging for future transport of the instrument.
- Sutter Instrument reserves the right to change specifications without prior notice.
- Use of this instrument is for research purposes only.

Handling Micropipettes

』Failure to comply with any of the following precautions may result in injury to the users of this device as well as those working in the general area near the device.

- The micropipettes used with this instrument are very sharp and relatively fragile. Avoid contact with micropipette tips to prevent accidentally impaling oneself.
- Always dispose of micropipettes by placing them into a well-marked, spill-proof "sharps" container.

TABLE OF CONTENTS

DISCLAIMER 3
SAFETY WARNINGS AND PRECAUTIONS 3
Electrical 3
Avoiding Electrical Shock and Fire-related Injury 3
Electromagnetic Interference 3
Operational 4
Other 4
Handling Micropipettes 4

1. INTRODUCTION 9
1.1 Structure of the TRIO MPC-145 Series Documentation Package 9
1.2 Components of the TRIO MPC-145 System 9
1.3 Components of the TRIO MPC-145-2 System 9
1.4 Components of the TRIO MPC-145S System 9
1.5 Components of the TRIO MPC-145S-2 System 9
1.6 Overview 10
1.6.1 Features: TRIO MPC-100 Controller 11
1.6.2 Features: TRIO MP-845 3-Axis Micromanipulator Electromechanical 11
1.6.3 Description 11
1.6.3.1 Stainless-Steel MP-845 (MP-845S) 13
2. INSTALLATION 15
2.1 Mounting Instructions 15
2.1.1 Mounting the MP-845 Series to the Stand or Platform 15
2.2 Headstage Mounting 16
2.3 Other Accessories 16
2.4 Electrical Connections and Initial Operating Instructions 17
$2.5 \mathrm{ROE} /$ Controller Rear Panel Controls and Configuration. 18
2.5.1 Power Switch 18
2.5.2 Configuration Switches 18
2.5.2.1 Switches 1, 2, 3 and 4 18
2.5.2.2 Switch 5: Y-Axis Lockout during Homing 19
2.5.2.3 Switch 6: Calibration Homing on Power On 19
2.5.2.4 Switches 7 \& 8 Reserved 19
2.5.2.5 Switch 9 Electromechanical Device Compatibility 19
2.5.2.6 Switch 10 Linear/nonlinear manual movement 20
3. OPERATIONS 21
3.1 Main Controls and Indicators on the ROE/Controller 21
3.2 Display 21
3.2.1 Initial Startup 21
3.3 Control Operations 22
3.3.1 Manipulator Select 22
3.3.2 Maximum Positive Position Values: 22
3.3.3 Setting Position for HOME or WORK 22
3.3.4 Setting the Angle of the Pipette/Headstage Holder 22
3.3.5 Operating the Virtual D Axis 23
3.3.6 Moving to the Home Position 23
3.3.7 Moving to the Work Position 24
3.3.8 Setting Absolute/Relative Coordinates Mode. 24
3.3.9 Mode Indications 25
3.3.10 Speed Control and ROE Knob Movements (SPEED) 25
3.3.11 Movement Knobs Disabling and Lock Mode ([SPEED]/LOCK) 25
3.3.12 Pausing Home Movements (HOME (while moving to Home)) 25
3.3.13 Pausing Work Movements (WORK (while moving to Work)) 25
3.3.14 Pulse Mode and Virtual D-Axis Movement (PULSE) 25
3.4 Micropipette/Headstage Exchange 25
4. EXTERNAL CONTROL 27
4.1 General 27
4.2 Protocol and Handshaking 27
4.3 Command Sequence Formatting 27
4.4 Axis Position Command Parameters 28
4.5 Microsteps and Microns (Micrometers) 28
4.6 Commands 29
4.6.1 Get Active Device \& Firmware Version ('K') Command 29
4.6.2 Change Active Device ('I') Command 30
4.6.3 Get Current Position and Angle ('c' or ' C ') Command. 30
4.6.4 Move to Controller-Defined HOME Position ('h') Command 31
4.6.5 Move to Controller-Defined WORK Position ('w') Command 31
4.6.6 Move to Specified "Home" Position ('H') Command 31
4.6.7 Move to Specified "Work" Position ('W') Command. 32
4.6.8 Move in Straight Line to Specified Position at Specified Speed ('S') Command 32
4.6.9 Interrupt Straight-Line Move (' ${ }^{\text {(}}{ }^{\prime}$) Command 33
4.6.10 Move to Specified X-Axis Position ('x' or ' X ') Command 34
4.6.11 Move to Specified Y-Axis Position ('y' or 'Y') Command 34
4.6.12 Move to Specified Z-Axis Position ('z' or 'Z') Command 34
4.6.13 Setting the Angle ('A') Command 35
4.6.14 Recalibrate (' R ') Command 35
4.6.15 Notes. 35
5. MAINTENANCE 39
6. RECONFIGURATION 39
6.1 Changing the Rotary Knob Functions on the ROE/Controller 39
APPENDIX A. LIMITED WARRANTY 41
APPENDIX B. ACCESSORIES 41
APPENDIX C. TECHNICAL SPECIFICATIONS 43
APPENDIX D. QUICK REFERENCE 45
D.1. Manual Operation 45
D.2. Configuration. 45
D.3. External Control 46
INDEX 53

TABLE OF FIGURES

Figure 1-1. The TRIO MPC-145 system .. 10
Figure 1-2. The TRIO MPC-145-2 system ... 10
Figure 2-1. Side view of MP-845 showing mounting adapter plate and lock screws. 15
Figure 2-2. Mounting the MP-845 on the Adapter Plate .. 16
Figure 2-3. Rear of TRIO MPC-100 ROE/Controller cabinet.. 17
Figure 2-4. Configuration switches on rear of TRIO MPC-100 ROE/Controller unit (switch
positions shown are factory defaults)... 18
Figure 3-1. LCD Display showing startup screen. .. 21
Figure 3-2. Startup screen .. 21
Figure 3-3. Device A factory default startup (Home) position after calibration............................... 21
Figure 3-4. Device B factory default startup (Home) position after calibration............................... 22
Figure 3-5. Maximum positive values.. 22
Figure 3-6. Moving to Home position (screen is amber while moving) .. 23
Figure 3-7. Factory default Home position.. 23
Figure 3-8. Example Home position defined and saved .. 23
Figure 3-9. Example Work position... 24
Figure 3-10. Relative mode.. 24
Figure 3-11. Relative mode ... 24
Figure 3-12. Absolute mode... 24
Figure 3-13. Angled side view of MP-845 to change headstage mount .. 26
Figure 6-1. Locations of the axis connectors inside the ROE/Controller ... 39

TABLE OF TABLES
Table 2-1. Configuration Switches 1-4: Configuring the direction of each axis.............................. 18
Table 2-2. Configuration Switch 5: Configuring the Homing Y-Movement Lock Out. 19
Table 2-3. Configuration Switch 6: Configuring the Sensor Test. .. 19
Table 2-4. Configuration Switches 7 \& 8: Reserved... 19
Table 2-5. Configuration Switch 9: Electromechanical device compatibility.................................... 19
Table 2-6. Configuration Switch 10: Linear/nonlinear manual movement. 20
Table 3-1. Maximum positive position value of each axis ... 22
Table 3-2. Screen colors and modes 25
Table 4-1. USB-VCP interface serial port settings. 27
Table 4-2. Microns/microsteps conversion 29
Table 4-3. Ranges (travel distances and bounds of each axis for compatible devices) 29
Table 4-4. Get Active Device \& Firmware Version ('K') command. 30
Table 4-5. Change active device ('I') command 30
Table 4-6. Get Current Position and Angle ('c' or 'C') command 31
Table 4-7. Move to controller-defined HOME position ('h') command. 31
Table 4-8. Move to controller -defined WORK position ('w') command. 31
Table 4-9. Move to specified "Home" position ('H') command. 32
Table 4-10. Move to specified "Work" position ('W') command. 32
Table 4-11. Straight-line move to specified position ('S') command. 32
Table 4-12. Straight-Line Move 'S' Command Speeds 33
Table 4-13. Interrupt a straight-line move in progress (‘` ${ }^{\text {’ }}$) command 33
Table 4-14. Move to specified X-axis position ('x' or 'X') command. 34
Table 4-15. Move to specified Y-axis position (' y ' or ' Y ') command. 34
Table 4-16. Move to specified Z-axis position ('z') command. 34
Table 4-17. Set the angle ('A') command. 35
Table 4-18. Recalibrate (' R ') command. 35
Table 4-19. Straight-Line Move 'S' Command Speeds. 37
Table C-1. TRIO MPC-100 cables and receptacles/connectors. 44
Table D-1. Configuration Switches 1 - 10 45
Table D-2. USB-VCP interface serial port settings. 46
Table D-3. Microns/microsteps conversion. 47
Table D-4. Ranges and bounds 47
Table D-5. TRIO MPC-100 external control commands. 48
Table D-6. Straight-Line Move ‘S’ Command Speeds. 51

1. INTRODUCTION

1.1 Structure of the TRIO MPC-145 Series Documentation Package

The TRIO MPC-145 series is a single or dual 3 -axis motorized micromanipulator system comprised of the TRIO MPC-100 ROE/controller, a power adapter, and one or two MP-845 (aluminum) or MP-845S/M (stainless steel) stepper-motor-based electromechanical micromanipulators. This manual consists of five parts: This chapter, Introduction, which provides an overview and general description of the TRIO MPC-145 series system; Chapter 2, Installation, which describes how to install, set up, and configure all components of the system; Chapter 3, Operations, which describes how to operate the TRIO MPC-100
ROE/controller; Chapter 4, External Control, describes how to control the system by computer; Chapter 5, Maintenance, describes how to perform routine and other maintenance; and Chapter 6, Reconfiguration, describes the reconfiguration possibilities of the TRIO MPC-100 ROE/controller.

1.2 Components of the TRIO MPC-145 System

Carefully remove all components from the shipping container. In addition to this manual, the following should be included:

- TRIO MPC-100 ROE Rotary Optical Encoder input device with built-in controller and external power adapter.
- MP-845 electromechanical micromanipulator
- 25-pin DSUB cable (connects the ROE/controller to the micromanipulator).
- Power adapter
- Power adapter AC mains cable appropriate for your location
- Ground/Earth cable
- USB Cable

1.3 Components of the TRIO MPC-145-2 System

Same components as the TRIO MPC-145 system, with an additional MP-845 electromechanical manipulator and 25-pin DSUB cable.

1.4 Components of the TRIO MPC-145S System

Same components as the TRIO MPC-145 system, with a stainless-steel MP-845S electromechanical manipulator.

1.5 Components of the TRIO MPC-145S-2 System

Same components as the TRIO MPC-145S system, with an additional MP-845S electromechanical manipulator and 25-pin DSUB cable.

1.6 Overview

Figure 1-1. The TRIO MPC-145 system

Figure 1-2. The TRIO MPC-145-2 system

1.6.1 Features: TRIO MPC-100 Controller

- Controls one or two micromanipulators
- Three independent axes (X, Y, and Z) each with a virtual fourth axis (D) for coaxial pipette movement utilizing a tangent function factoring the holder's angle and the X and Z axes.
- Sub-micron 100 nm resolution
- Digital display indicates coordinates in relative or absolute of active manipulator
- User-friendly, fanless compact controller with ROE preserves bench space
- Push button control of multiple functions - work, home, lock, pulse, relative mode, and angle set
- Robotic home- and work-position moves for easy automated pipette exchange
- Configuration DIP switches to select each axis' control knob rotation directionality
- USB interface for external computer control

1.6.2 Features: TRIO MP-845 3-Axis Micromanipulator Electromechanical

- Available in aluminum or thermally stable stainless steel (TRIO MP-845S)
- Mechanically robust construction for high stability
- Precision cross-roller bearings
- Three independent axes -25 mm orthogonal travel in X, Y and Z
- Carries up to a kilogram
- Suited for in vitro and in vivo electrophysiological recording
- Universal mounting system for headstage or pipette holder

1.6.3 Description

Based on the original Sutter Instrument TRIO ${ }^{\text {TM }}$ motorized 3-axis micromanipulator, the TRIO MPC-100 expands the TRIO's capabilities by supporting up to two micromanipulators connected to a single ROE (Rotary Optical Encoder) and controller. A switch is provided on the front part of the controller for selecting which of the two manipulators is active for manual control. The X, Y, and Z axes provide 25 mm range of motion (MP-845 or MP-845S). D -axis movement virtually uses a tangent function of the chosen angle of the holder and simultaneously moving X and Z. The ROE controller has a digital display and keys for Home, Work, Pulse, Angle Set, Speed, Lock (Quiet) Mode, and Relative positioning. The compact, intuitive controller takes up minimal bench space, is fan-free, and easy to use.
While the axes provide X, Y, and Z orthogonal motion typical of most motorized manipulators, a synthetic diagonal axis is available with the TRIO MPC-100 allowing one to move the electrode coaxially using X and Z at the exact desired angle of approach using a separate "D" control knob.
The TRIO MPC-100's ROE provides fine control of electrode position and the rate of rotation of ROE dials for each axis determines the speed of travel. The finest step size is less than 100 nm . Five conveniently located buttons on the ROE provide control of all the basic
functions you will need in normal operation (Work, Home, Speed/Lock, Relative, and Pulse/Angle).

Press and hold WORK (for 3 seconds) to quickly store a work position, tap HOME to move all axes to an initial location that is useful for changing electrodes, or press and hold the HOME button (for 3 seconds) to memorize a new HOME position.
When ready to record data, suppress the motor drive electronics by pressing and holding for 3 seconds the SPEED/LOCK button. In the LOCK mode, the display turns red and ROE input is locked out to avoid any accidental motion.
Pressing and holding the RELATIVE button for three seconds at any location causes the display coordinates to change to all zeroes. When activating relative mode, the display turns blue.

To return to viewing the absolute coordinates, tap the RELATIVE button to toggle back to absolute positioning mode.

Finally, tapping the PULSE button causes a $3 \mu \mathrm{~m}$ advance in the diagonal. This rapid burst of forward motion can assist in sharp electrode cell penetration. Pressing and holding the PULSE button for 3 seconds allows for entering the angle to which the electrode/headstage is physically set so that $\mathrm{X} \& \mathrm{Z}$ coaxial (diagonal) movement is made at the correct angle.
All the electronics, except for a small power supply, are housed within the TRIO MPC-100 ROE and no separate controller or computer is required.
External computer control of the TRIO MPC-100 is possible via the USB connector mounted on the controller/ROE's rear panel. The controller's internal software is programmed with a defined set of commands allowing for a wide range of micromanipulator/stage movements as programmed in software residing in an external computer connected via USB.
Designed with maximum flexibility in mind, a DIP switch on the controller changes the directional movement of the ROE knobs to accommodate the preference of the user. A Y-axis lockout function (accessible by DIP switch) is also available, allowing X/Z-only axial movement during HOME and WORK repositioning. The TRIO comes standard with a universal mounting system suitable for the most popular headstages or pipette holders.
The new MP-845 micromanipulator features construction based on the TRIO-245, but with the addition of precision cross-roller bearings for even tighter tolerances, and a 25pin connector for future compatibility with our other controllers. The MP-845 is a highly stable 3 -axis manipulator with 25 mm of travel on each axis. The TRIO MPC- 100 controller gives the MP-845 a synthetic fourth axis that can be set in software to any angle between 0 and 90 degrees for diagonal movement. Based on a lead-screw design with a smaller overall size and footprint than most manipulators, the MP-845 is ideal for applications that require 2 pipettes in one setup or for setups where space is limited.

1.6.3.1 Stainless-Steel MP-845 (MP-845S)

The MP-845 manipulator is also available in stainless steel. The standard version of the MP-845 has virtually no drift in its motor and bearing assemblies. The last remaining hurdle is that of thermal drift caused by the expansion and contraction of the aluminum body of the manipulator. By utilizing a stainless steel with very low coefficient of expansion, the MP-845S is simply the lowest drift manipulator available on the market. The added mass of the stainless-steel body has the additional benefit of dampening out vibration, giving the stainless MP-845S the silkiest movement of any manipulator.

Because low expansion stainless steels do have some ferric content, the stainless MP845 S is PVD coated in titanium nitride, giving it its distinctive gold color. This coating will ensure that the stainless trio will resist corrosion caused by exposure to salt solutions in a lab environment.

(This page intentionally left blank.)

2. INSTALLATION

When installing the TRIO MPC-100 system for the first time, it is recommended that the components of the system be installed in the following order: MP-845 electromechanical micromanipulator first, followed by the TRIO MPC-100/E ROE/Controller.

IMPORTANT

Once the TRIO MPC-145 series system has been unpacked, remove the shipping tape from the various locations on each MP-845 series electromechanical micromanipulator. The shipping tape must be removed before operating the TRIO MPC-100 system. If you need to transport the MP-845 series in the future, reapply 2 to 3 -inch pieces of masking tape to the same locations. Once the tape has been removed, handle the MP-845 with care. The mechanisms can be damaged if any of the axes are inadvertently moved without the tape in place.

2.1 Mounting Instructions

The following sections describe how to mount the MP-845 manipulator to a stand using the mounting adapter plate, how to adjust the pipette angle and how to mount different headstages.

2.1.1 Mounting the MP-845 Series to the Stand or Platform

The MP-845 attaches to the mounting adapter plate using four M3.5x6 hex head locking screws.

Figure 2-1. Side view of MP-845 showing mounting adapter plate and lock screws.

The MP-845 series is shipped with the adapter plate in place. It is attached using four tapered pegs, along with four locking screws.

To remove it, first loosen the four hex screws that secure the manipulator to the pegs in the adapter plate. The rear pair is in a similar location in the back of the manipulator. Once the locking screws are sufficiently loosened, lift the MP-845 upwards from the adapter plate.
Before attaching the adapter plate to the MP-845, you need to decide where to position the manipulator on your stand/platform. The stand can be any flat surface carrying $1 / 4-20,10-32$, or M6 holes on one-inch centers (such as a Sutter Instrument MT-series stand or MD series platform).
Examine the space of the platform onto which installation is to take place. Attach the control cable to MP-845 and move the entire unit around on the platform until the precise desired position is determined. A small bag containing the necessary hardware to attach the MP845 to the stand is included.

Figure 2-2. Mounting the MP-845 on the Adapter Plate

Once the plate is mounted, align the pegs on top of the plate with the holes in the manipulator, push the X -axis firmly onto the plate, and re-tighten the locking hex set screws.

2.2 Headstage Mounting

Sutter IPA headstage, Axon headstages 203B or CV-7, and the Heka EPC-10 headstage have an integral dovetail that fits directly into the rotary dovetail slide bracket on the MP-845. The dovetail slide bracket on the MP-845 also supports older Axon and Heka headstages when using the 4 " dovetail extension.

Rod-mounted headstages and micro tools are accommodated by the use of a rod clamp that fits into the dovetail (not shown). All the headstage adapters and mounting hardware are included with the manipulator and are shipped in a zip lock plastic bag.

2.3 Other Accessories

One or more accessories may have been ordered and received for mounting the MP-845 and/or modifying the headstage mount to the manipulator (i.e., rotating base, microscope stage mount, gantry, dovetail extension, etc.). Setup of these accessories is normally covered in documentation accompanying the accessory.

2.4 Electrical Connections and Initial Operating Instructions

Initially, you may want to simply connect the MP-845 micromanipulator and the ROE/Controller together and try some gross movements in order to get a feel for the controls and how to make simple movements. It is perfectly acceptable to set the manipulators in the middle of a bench top, make all electrical connections and then observe each unit's movement by eye.

\triangle
CAUTION: Unless the MP-845 micromanipulator electromechanical baseplate is firmly bolted down to a breadboard or solidly to a firm surface, the manipulator is likely to tip over when fully extending all of its axes, especially if it is loaded with a headstage that extends beyond the manipulator's current center of gravity.
Upon deciding to directly install the TRIO MPC-100 system in your rig, it is useful to follow the initial setup procedure to learn how to move the units to allow easy access to the mounting screws.

1. With the power switch on the back of the ROE in the OFF (0) position, connect the power adapter's 24 VDC cable to the POWER receptacle.

2. With the power OFF (rear panel switch in the " 0 " position), connect a wellgrounded/earthed wire to the GROUND banana plug receptacle.
3. With the power OFF, connect the male end of the DB - 25 cable to either MANIPULATOR connector on the ROE, the other end of which is connected to the MP-845, MP-845S, or MP-285M micromanipulator electromechanical or based stage. (See cautionary note below.)
4. Verify that the ten switches associated with the appropriate MANIPULATOR (A or B) on the rear of the ROE are set as desired.
5. Power up the system by moving the power switch on the rear of the ROE to the " 1 " position.

2.5 ROE/Controller Rear Panel Controls and Configuration

2.5.1 Power Switch

The power switch for the TRIO MPC-100 system is located on the rear panel of the ROE/controller. At power up, the microprocessor in the ROE/controller scans the attached equipment and configures the system accordingly.

CAUTION: When changing the configuration switches described in the following paragraphs,

 make sure that controller's power switch is turned off.
2.5.2 Configuration Switches

Each manipulator channel (A and B) has its own bank of configuration switches. Switch bank A affects only MANIPULATOR A, and switch bank B likewise for MANIPULATOR B.

Figure 2-4. Configuration switches on rear of TRIO MPC-100 ROE/Controller unit (switch positions shown are factory defaults).

2.5.2.1 Switches 1, 2, 3 and 4

These switches set the directionality for each of the four axes.
Table 2-1. Configuration Switches 1-4: Configuring the direction of each axis.

Switch \#	Definition	State	Setting	Position
1	X-Axis Knob Directionality for Forward (+) Movement	Clockwise	OFF*	UP*
		Counterclockwise	ON	DOWN
2	Y-Axis Knob Directionality for Forward (+) Movement	Clockwise	OFF*	UP*
		Counterclockwise	ON	DOWN
3	Z-Axis Knob Directionality for Forward (+) Movement	Clockwise	OFF*	UP*
		Counterclockwise	ON	DOWN
4	D-Axis Knob Directionality for Forward (+) Movement	Clockwise	OFF*	UP*
		Counterclockwise	ON	DOWN

* Factory default (typical setting for right-hand-mounted manipulator).

2.5.2.2 Switch 5: Y-Axis Lockout during Homing

Table 2-2. Configuration Switch 5: Configuring the Homing Y-Movement Lock Out.

Switch \#	Definition	State	Setting	Position
	Y-Movement lock out during homing	(no movement while X \& Z are homing)	OFF	UP
5	Enabled: Locked (pressing HOME or WORK)	Disabled: Not locked (Y moves along with X \& Z when homing)	ON*	DOWN*

* Factory default (recommended normal operation setting)

2.5.2.3 Switch 6: Calibration Homing on Power On

Table 2-3. Configuration Switch 6: Configuring the Sensor Test.

Switch \#	Definition	State	Setting	Position
6		Calibration Homing on Power On	Disabled: No calibration occurs on power on. Power-off position is retained on power on	OFF
		Enabled: Calibrates to $1,000 \mu \mathrm{~m}$ for all axes on power on. Power-off position is forgotten.	ON*	DOWN*

* Factory default (recommended normal operation setting)

2.5.2.4 Switches 7 \& 8 Reserved

Switches $7 \& 8$ are reserved.
Table 2-4. Configuration Switches 7 \& 8: Reserved.

Switch \#	Definition	Setting	Position
7	Reserved	OFF* *	UP*
8	Reserved	OFF* *	UP*

* Factory default (recommended normal operation setting).

2.5.2.5 Switch 9 Electromechanical Device Compatibility

Table 2-5. Configuration Switch 9: Electromechanical device compatibility.

Switch \#	Definition	State	Setting	Position
9	Electromechanical device compatibility	MP-845[S]/M, MP-245/M micromanipulators	OFF* *	UP*
		MP-285/M micromanipulator; 3DMS \& MT-78 stages; MOM \& SOM objective movers	ON	DOWN

* Factory default (recommended normal operation setting).

2.5.2.6 Switch 10 Linear/nonlinear manual movement

Contact Sutter Instrument technical support for more information.
Table 2-6. Configuration Switch 10: Linear/nonlinear manual movement.

Switch \#	Definition	Setting	Position
10	Linear/nonlinear manual movement	OFF *	UP*

3. OPERATIONS

3.1 Main Controls and Indicators on the ROE/Controller

Figure 3-1. Front view of the TRIO MPC-100 ROE/Controller

3.2 Display

3.2.1 Initial Startup

(Text in Green)

Figure 3-1. LCD Display showing startup screen.
When starting the TRIO MPC-100 system for the first time or if the HOME position has not yet been defined (saved), the values of all four axes will be 1,000 micrometers (microns).

(Text in Green)
Figure 3-2. Startup screen

(Text in Green)

Figure 3-3. Device A factory default startup (Home) position after calibration

(Text in Green)

Figure 3-4. Device B factory default startup (Home) position after calibration

3.3 Control Operations

3.3.1 Manipulator Select

The MANIPULATOR select switch on the front of the TRIO MPC-100 ROE/controller is used to select which of two possible manipulators (or stages) is active for manual control using the axis control knobs and buttons or keys (HOME, WORK, etc.).

3.3.2 Maximum Positive Position Values:

Move the dial of an axis clockwise until its position value stops incrementing. The following table lists the maximum position value (in microns) for each axis.

Table 3-1. Maximum positive position value of each axis

Axis	Maximum Position Value (in microns)
X	25,000
Y	25,000
Z	25,000

$\mathrm{X}=25000$	$\mathrm{Y}=25000$
$\mathrm{Z}=25000$	Speed 0

(Text in Green)

Figure 3-5. Maximum positive values

3.3.3 Setting Position for HOME or WORK

To set position, hold down HOME or WORK button for 3 seconds until beep sounds.

3.3.4 Setting the Angle of the Pipette/Headstage Holder

To change the angle of the holder, first loosen the set screw at the top of the rotary dovetail bracket, rotate the holder to the desired angle, and then retighten the set screw.

Measure the angle of the holder. (Tip: Many smart phones have an app with a level that can assist the user.)

3.3.5 Operating the Virtual D Axis

The TRIO MPC-100 consists of three physical axes, X, Y and Z. A tangent function utilizing X and Z axes and the angle of the holder has been implemented to create a virtual D axis. Use angles between 10° and 90° for best results.
Zero $\left(0^{\circ}\right)$ is set with the diagonal being parallel to the table and 90° is set with the diagonal being perpendicular to the table.

To set the angle measured above, on the ROE hold [PULSE]/ANGLE down for 3 seconds. The screen will be red until the display indicates in green: "Select the angle in use ($0-90$)".

Use the D dial on the ROE to set the value of the angle. Once this value is dialed in, do not touch the ROE knob for $8-10 \mathrm{sec}$. The virtual D angle will now be set.

3.3.6 Moving to the Home Position

Figure 3-6. Moving to Home position (screen is amber while moving)
If the Home position has not yet been defined and saved, the Home position values for all axes will default to 1,000 microns, as shown in the following figure.

(Text in Green)

Figure 3-7. Factory default Home position
If the Home position has been previously defined (saved), pressing HOME will make a move to the defined home position (see example in the following figure).

(Text in Green)

Figure 3-8. Example Home position defined and saved
To move to the Home position, press HOME. If the current position before pressing HOME is greater than the Home position, the movement will be as follows:

NOTE: Movement to the Home position works only if X coordinates of the HOME position are less than the WORK position. HOME and WORK positions cannot be the same.

1. Movement begins by retracting the Z and X axes (at the angle currently set) away from the sample.
2. Movement then continues along the Y axis toward the Home position (towards the operator and away from the microscope).
NOTE: Step 2 occurs only if "Y-Lockout" is disabled. Otherwise, no movement along the Yaxis occurs.

3.3.7 Moving to the Work Position

(Text in
Green)

Figure 3-9. Example Work position
To move to the Work position, press the WORK button. If the current position before pressing WORK is less than the Work position, the movement will be as follows:

1. Movement travels along the Y -axis away from the operator and towards the microscope.
2. Movement is then made diagonally (according to angle setting) along the X and Z axes toward the sample.
NOTE: Step 1 occurs only if "Y-Lockout" is disabled. Otherwise, movement begins with Step 2.

3.3.8 Setting Absolute/Relative Coordinates Mode

The RELATIVE button toggles between Relative and Absolute coordinate systems. The default coordinate system on power up is Absolute, with the coordinates on the screen shown in green. To switch to relative coordinates, press the RELATIVE button once. To reset the current position to all zeroes, depress the RELATIVE button for 3 seconds or until a beep is heard, and then release the button. This resets the current position to all zeroes.

Press RELATIVE once (briefly for $<2 \mathrm{sec}$.)

(Text in Blue)
Figure 3-10. Relative mode
Depress RELATIVE for 3 sec . or until beep sounds

(Text in Blue)
Figure 3-11. Relative mode
Pressing RELATIVE briefly while in Relative mode, returns displayed coordinates back to Absolute mode

(Text in Green)
Figure 3-12. Absolute mode

3.3.9 Mode Indications

The TRIO MPC-100 system has three modes of operation: Absolute coordinates, Relative coordinates, and Lock mode. The display turns color for each specific mode, as shown in the following table.

Table 3-2. Screen colors and modes

Screen Color	Mode	Example
Green	Absolute Coordinates	$\begin{array}{ll} \mathrm{X}=1868 & \mathrm{Y}=1524 \\ \mathrm{Z}=1686>=2706 \end{array}$
Blue	Relative Coordinates	$\begin{array}{llll} \mathrm{X}=- & 0 & \mathrm{Y}= & 0 \\ \mathrm{Z}= & 0 & >= & 0 \end{array}$
Red	Knobs disabled during move to Home or Work position, while in Lock mode.	$\begin{array}{lllr} \mathrm{X}= & 0 & \mathrm{Y}= & 1524 \\ \mathrm{Z}= & 0 & >= & 0 \end{array}$

3.3.10 Speed Control and ROE Knob Movements (SPEED)

The rate at which the ROE axis knobs move the manipulator can be adjusted with the SPEED button. Each press of the button cycles through four speeds: 0 (normal) through 3 (fastest).

3.3.11 Movement Knobs Disabling and Lock Mode ([SPEED]/LOCK)

Axis-movement knobs are disabled during movements to Home, Work, or while in Lock Mode (display is in red).

3.3.12 Pausing Home Movements (HOME (while moving to Home))

After Move to Home has been initiated, and while the move is in progress, pressing HOME a second time pauses the manipulator. Pressing HOME again resumes movement.

3.3.13 Pausing Work Movements (WORK (while moving to Work))

After Move to Work has been initiated, and while the move is in progress, pressing WORK a second time pauses the manipulator. Pressing WORK again resumes movement.

3.3.14 Pulse Mode and Virtual D-Axis Movement (PULSE)

Pulse mode advances the D axis in $2.85 \mu \mathrm{~m}$ steps. Each press of the PULSE button increments the Diagonal axis by one $2.85-\mu \mathrm{m}$ step beyond the current position. This feature can be used to penetrate tough or resistant tissue.

3.4 Micropipette/Headstage Exchange

Mounted on the front of the Z-axis of the manipulator is the angle-control plate for the headstage mount.

Figure 3-13. Angled side view of MP-845 to change headstage mount
To change the headstage/micropipette, loosen the screw in the center of the rotary dovetail clamp. Slide the headstage upward out of the dovetail groove. Make any adjustments needed of the headstage, and then tighten down (but do not over tighten) the lock screw in the center of the holding bracket.

4. EXTERNAL CONTROL

4.1 General

Controlling the TRIO MPC-100 externally via computer is accomplished by sending commands over the USB interface between the computer and the USB connector on the rear panel of the TRIO MPC-100 controller/ROE. The USB device driver for Windows is downloadable from Sutter Instrument's web site (www.sutter.com). The TRIO MPC-100 requires Sutter Instrument's USB CDM (Combined Driver Model) Version 2.10.00 or higher. The CDM device driver consists of two device drivers: 1) USB device driver, and 2) VCP (Virtual COM Port) device driver. Install the USB device driver first, followed by the VCP device driver. The VCP device driver provides a serial RS-232 I/O interface between a Windows application and the TRIO MPC-100. Although the VCP device driver is optional, its installation is recommended even if it is not going to be used. Once installed, the VCP can be enabled or disabled.

The CDM device driver package provides two I/O methodologies over which communications with the controller over USB can be conducted: 1) USB Direct (D2XX mode), or 2) Serial RS232 asynchronous via the VCP device driver (VCP mode). The first method requires that the VCP device driver not be installed, or if installed, that it be disabled. The second method requires that the VCP be installed and enabled.
Virtual COM Port (VCP) Serial Port Settings: The following table lists the required RS-232 serial settings for the COM port (COM3, COM5, etc.) generated by the installation or enabling of the VCP device driver.

Table 4-1. USB-VCP interface serial port settings.

Property	Setting
Data ("Baud") Rate (bits per second (bps))	57600
Data Bits	8
Stop Bits	1
Parity	None
Flow Control	None

The settings shown in the above table can be set in the device driver's properties (via the Device Manager if in Windows) and/or programmatically in your application.

4.2 Protocol and Handshaking

Command sequences do not have terminators. All commands return an ASCII CR (Carriage Return; 13 decimal, 0D hexadecimal) to indicate that the task associated with the command has completed. When the controller completes the task associated with a command, it sends ASCII CR back to the host computer indicating that it is ready to receive a new command. If a command returns data, the last byte returned is the task-completed indicator.

4.3 Command Sequence Formatting

Each command sequence consists of at least one byte, the first of which is the "command byte". Those commands that have parameters or arguments require a sequence of bytes that
follow the command byte. No delimiters are used between command sequence arguments, and command sequence terminators are not used. Although most command bytes can be expressed as ASCII displayable/printable characters, the rest of a command sequence must generally be expressed as a sequence of unsigned byte values ($0-255$ decimal; $00-\mathrm{FF}$ hexadecimal, or $00000000-11111111$ binary). Each byte in a command sequence transmitted to the controller must contain an unsigned binary value. Attempting to code command sequences as "strings" is not advisable. Any command data returned by the controller should be initially treated as a sequence of unsigned byte values upon reception. Groups of contiguous bytes can later be combined to form larger values, as appropriate (e.g., 2 bytes into 16 -bit "word", or 4 bytes into a 32 -bit "long" or "double word"). For the TRIO MPC-100, all axis position values (number of microsteps) are stored as "unsigned long" 32bit positive-only values, and each is transmitted and received to and from the controller as four contiguous bytes.

4.4 Axis Position Command Parameters

All axis positional information is exchanged between the controller and the host computer in terms of microsteps. Conversion between microsteps and microns (micrometers) is the responsibility of the software running on the host computer (see Microns/microsteps conversion table for conversion factors).
Microsteps are stored as positive 32 -bit values ("long" (or optionally, "signed long"), or "unsigned long" for C/C++; "I32" or "U32" for LabVIEW). "Unsigned" means the value is always positive; negative values are not allowed. The positive-only values can also be stored in signed type variables, in which case care must be taken to ensure that only positive values are exchanged with the controller.

The 32 -bit value consists of four contiguous bytes, with a byte/bit-ordering format of Little Endian ("Intel") (most significant byte (MSB) in the first byte and least significant (LSB) in the last byte). If the platform on which your application is running is Little Endian, then no byte order reversal of axis position values is necessary. Examples of platforms using Little Endian formatting include any system using an Intel/AMD processor (including Microsoft Windows and Apple Mac OS X).
If the platform on which your application is running is Big Endian (e.g., Motorola PowerPC CPU), then these 32-bit position values must have their bytes reverse-ordered after receiving from, or before sending to, the controller. Examples of Big-Endian platforms include many non-Intel-based systems, LabVIEW (regardless of operating system \& CPU), and Java (programming language/environment). MATLAB and Python (script programming language) are examples of environments that adapt to the system on which each is running, so LittleEndian enforcement may be needed if running on a Big-Endian system. Some processors (e.g., ARM) can be configured for specific endianess.

4.5 Microsteps and Microns (Micrometers)

All coordinates sent to and received from the controller are in microsteps. To convert between microsteps and microns (micrometers), use the following conversion factors (multipliers):

Table 4-2. Microns/microsteps conversion

TRIO MPC-100 Controller with Device	From/To Units	Conversion Factor (multiplier)
MP-845/M, MP-845S/M, or MP-245/M* micromanipulator	μ steps $\rightarrow \mu \mathrm{m}$	0.09375
	$\mu \mathrm{m} \rightarrow \mu$ steps	10.66666666667
MP-285/M micromanipulator; 3DMS or MT-78 stage; MOM or SOM objective mover	μ steps $\rightarrow \mu \mathrm{m}$	0.125
	$\mu \mathrm{m} \rightarrow \mu$ steps	8

For accuracy in your application, type these conversion factors as "double" (avoid using the "float" type as it lacks precision with large values). When converting to microsteps, type the result as a 32-bit "long", "signed long", or "I32" integer. When converting to microns, type the result as "double" (64-bit double-precision floating-point values).

Table 4-3. Ranges (travel distances and bounds of each axis for compatible devices)

| TRIO MPC-100 Controller with |
| :--- | :---: | :---: | :---: | :---: |
| Device |\quad Axis \(\left.\quad \begin{array}{c}Millimeters

(\mathrm{mm})\end{array} \begin{array}{c}Microns/-

Micrometers

(\mu \mathrm{m})\end{array}\right)\)\begin{tabular}{c}
Microsteps

$(\mu \mathrm{steps})$

$|$

\hline | MP-845/M, MP-845S/M, or |
| :--- |
| MP-245/M* micromanipulator | \& $\mathrm{X}, \mathrm{Y}, \& \mathrm{Z}$ \& $0-25$

\hline | MP-285/M micromanipulator; |
| :--- |
| 3DMS or MT-78 stage; MOM or |
| SOM objective mover | \& $\mathrm{X}, \mathrm{Y}, \& \mathrm{Z}$ \& $0-25,000$

\hline
\end{tabular}

* DB25 to DB26HD adapter required for MP-245/M (Manipulator Port A only).

NOTE: Origin is a physical position of travel that defines the center of the absolute position coordinate system (i.e., absolute position 0).
Physical Positions: BOT (Beginning Of Travel), COT (Center Of Travel), \& EOT (End Of Travel).
In the TRIO MP-145 Series, the Origin is fixed at BOT.
NOTE: Travel length of each axis is automatically determined by end-of-travel sensor.

4.6 Commands

4.6.1 Get Active Device \& Firmware Version ('K') Command

This command is used to obtain the current-active device attached to the controller. The data returned is four bytes, the first of which is the device number (1 (MANIPULATOR A) or 2 (MANIPULATOR B), followed by the major version number, minor version number, and the completion indicator.

Table 4-4. Get Active Device \& Firmware Version ('K') command.

Tx/-	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrlchar	$\begin{array}{\|c} \hline \text { ASCII } \\ \text { def./- } \\ \text { char. } \end{array}$	Description
$\left\|\begin{array}{c} \text { Delay } \\ \text { /-Rx } \end{array}\right\|$				Dec.	Hex.	Binary				
Tx	All	1	0	75	4B	01001011	0075		K	Command
Rx	All	4	0	1 - 2	01 - 02	$\left\lvert\, \begin{gathered}00000001 \\ 00000010\end{gathered}\right.$		${ }^{\wedge} \mathrm{A}$	$\left\lvert\, \begin{gathered}\text { SSOH> } \\ - \\ \text { STXX }\end{gathered}\right.$	Currently-active device (1-2 $(\mathrm{A}-\mathrm{B})) .$
			1							Major version number (e.g., if ver. $=2.62$, then byte $=2$)
			2							Minor version number (e.g., if ver. $=2.62$, then byte $=62$)
			3	13	0D	00001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator

NOTE: The device number returned by the ' K ' command indicates the active device for external commands only; it is completely independent of the manual A and B switch on the front of the MPC-100 ROE/controller.

4.6.2 Change Active Device ('I') Command

This command is used to change the currently-active device attached to the controller. One byte follows the command, consisting of a value of 1 (for Device A) or 2 (for Device B). Two bytes are returned: The first contains the device specified as confirmation, followed by the completion indicator.

Table 4-5. Change active device ('I') command.

Tx/-	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrlchar	$\begin{array}{\|c\|} \hline \text { ASCII } \\ \text { def./- } \\ \text { char. } \\ \hline \end{array}$	Description
$\begin{gathered} \text { Delay } \\ \text { /-Rx } \end{gathered}$				Dec.	Hex.	Binary				
Tx	All	2	0	73	49	01001001	0073		I	Command
			1	1-2	01 - 02	$\begin{gathered} 0000 \quad 0001 \\ 0000010 \end{gathered}$	$\begin{gathered} 0001 \\ - \\ 0002 \end{gathered}$	\wedge \wedge - $\wedge^{\wedge} \mathrm{B}$	$\begin{array}{\|c\|} \hline \text { SOH }> \\ - \\ \text { STXX }> \\ \hline \end{array}$	Manipulator to be made active (by value: 1 (for A) or 2 (for B)
Rx	All	2	0	1-2	01 - 02	$\begin{gathered} 0000 \quad 0001 \\ 000 \\ 000000 \end{gathered}$			$\left\|\begin{array}{c} \mathrm{SOH}> \\ - \\ <\mathrm{STX}> \end{array}\right\|$	Manipulator value specified
			1	13	0D	00001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator

NOTE: The device number specified with the 'I' command is the active device for external commands only; it is completely independent of the manual A and B switch on the front of the MPC-100 ROE/controller.

4.6.3 Get Current Position and Angle ('c' or ' C ') Command

This command is used to obtain the current position ($\mathrm{X}, \mathrm{Y}, \& \mathrm{Z}$ coordinates) of the manipulator or stage and the current angle setting. The command sequence consists of one byte as shown in the following table. The data received consists of fourteen bytes containing X, Y, \& Z position (32-bit) values in microsteps (4 bytes each), the angle in degrees (1 byte), and the completion indicator (1 byte).

Table 4-6. Get Current Position and Angle ('c' or 'C') command.

$\begin{array}{\|c\|} \mathrm{Tx} /- \\ \text { Delay/- } \\ \mathrm{Rx} \end{array}$	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrlchar	$\left.\begin{gathered} \text { ASCII } \\ \text { def./- } \\ \text { char. } \end{gathered} \right\rvert\,$	Description
				Dec.	Hex.	Binary				
Tx	All	1	0	$\begin{aligned} & 99 \\ & \text { or } \\ & 67 \end{aligned}$	$\begin{aligned} & 63 \\ & \text { or } \\ & 43 \end{aligned}$	$\left\|\begin{array}{cc} 0110 & 0011 \\ \text { or } \\ 0100 & 0011 \end{array}\right\|$	$\begin{gathered} 0099 \\ \text { or } \\ 0043 \end{gathered}$		$\begin{aligned} & \text { 'c' } \\ & \text { or } \\ & \text { 'C' } \end{aligned}$	Command
Rx.	All		0 (4)							X pos. in μ steps
			4 (4)							Y pos. in μ steps
			8 (4)							Z pos. in μ steps
			$\begin{aligned} & 12 \\ & (1) \end{aligned}$	0 - 90	00 - $5 A$	$\begin{array}{cc} 0000 & 0000 \\ 0101 & 1010 \end{array}$			$\left\lvert\, \begin{gathered} \mid<\mathrm{NUL}> \\ - \\ { }^{\prime} \mathrm{z}^{\prime} \end{gathered}\right.$	Angle in degrees
			13	13	0D	00001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator

NOTE: See Microns/microsteps conversion table for conversion from μ steps to μm (microns).
NOTE: All positions are in microsteps (usteps): 32-bit (4 bytes) positive (unsigned) values, in Little Endian bit order (see Notes).

4.6.4 Move to Controller-Defined HOME Position ('h') Command

This command moves to the position saved by the controller's HOME button. X \& Z move first (angle determines order and simultaneity), and \mathbf{Y} last.

Table 4-7. Move to controller-defined HOME position ('h') command.

Tx/-	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrl- char	ASCII def./- char.	Description
$\begin{gathered} \text { Delay/- } \\ \text { Rx } \end{gathered}$				Dec.	Hex.	Binary				
Tx	All	1	0	104	68	01101000	0104		'h'	Command
Rx	All	1	0	13	0D	00001101			<CR>	Completion indicator

4.6.5 Move to Controller-Defined WORK Position ('w') Command

This command moves to the position saved by the controller's WORK button. Y moves first, and X \& Z last (angle determines order/simultaneity).

Table 4-8. Move to controller -defined WORK position ('w') command.

Tx/-Delay/Rx	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	$\begin{array}{\|l\|} \hline \text { Ctrl- } \\ \text { char } \end{array}$	ASCII def./char.	Description
				Dec.	Hex.	Binary				
Tx		1	0	119	77	01110111	0119		'w'	Command
Rx		1	0	13	OD	\|0000 1101			<CR>	Completion indicator

4.6.6 Move to Specified "Home" Position ('H’) Command

This command instructs the controller to move all 3 axes to specified position, moving $\mathbf{X} \& \mathbf{Z}$ (angle determines order/simultaneity), and Y last (see Ranges table).

Table 4-9. Move to specified "Home" position ('H') command.

Tx/- Delay/Rx	Ver.	Total Bytes	$\begin{array}{\|l\|} \hline \text { Byte } \\ \text { Offset } \\ \text { (Len.) } \end{array}$	Value			Alt-keypad \#	Ctrl-char	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { ASCII } \\ \text { def./- } \\ \text { char. } \end{array} \\ \hline \end{array}$	Description
				Dec.	Hex.	Binary				
Tx	All	13	0	72	48	01001000	0072		'H'	Command
			1 (4)							$\mathrm{X} \mu$ steps
			5 (4)							$\mathrm{Y} \mu$ steps
			9 (4)							$\mathrm{Z} \mu$ steps
Rx	All	1	0	13	0D	100001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator

NOTE: All positions are in microsteps (usteps): 32-bit (4 bytes) positive (unsigned) values, in Little Endian bit order (see Notes).

4.6.7 Move to Specified "Work" Position ('W') Command

This command instructs the controller to move all 3 axes to specified position, moving \mathbf{Y} first, and X \& Z last (angle determines order/simultaneity) (see Ranges table).

Table 4-10. Move to specified "Work" position ('W') command.

Tx/-Delay/Rx	Ver.	Total Bytes	$\begin{aligned} & \text { Byte } \\ & \text { Offset } \\ & \text { (Len.) } \end{aligned}$	Value			Alt-keypad \#	$\begin{aligned} & \text { Ctrl- } \\ & \text { char } \end{aligned}$	ASCII def./char.	Description	
				Dec.	Hex.	Binary					
Tx	All	13	0	87	57	01010111	0087		'w'	Command	
			1 (4)							$\mathrm{X} \mu$ steps	
			5 (4)							Y μ steps	
			9 (4)							$\mathrm{Z} \mu$ steps	
Rx	All	1	0	13	OD	\|0000 1101			*M	<CR>	Completion indicator

NOTE: All positions are in microsteps (usteps): 32-bit (4 bytes) positive (unsigned) values, in Little Endian bit order (see Notes).

4.6.8 Move in Straight Line to Specified Position at Specified Speed ('S') Command

This command instructs the controller to move all three axes simultaneously in a straight line to specified position (see Ranges table), at a specified speed (1 of 16 speeds). The command sequence consists of fourteen bytes.

Table 4-11. Straight-line move to specified position ('S') command.

Tx/-	Ver.	Total Bytes	$\begin{array}{\|c\|} \hline \text { Byte } \\ \text { Offset } \\ \text { (Len.) } \end{array}$	Value			Alt-keypad \#	Ctrlchar	$\begin{aligned} & \text { ASCII } \\ & \text { def./- } \\ & \text { char. } \end{aligned}$	Description
$\left\lvert\, \begin{gathered} \text { Delay/- } \\ \mathbf{R x} \end{gathered}\right.$				Dec.	Hex.	Binary				
Tx	All	14	0	83	53	01010011	0083		'S'	Command
			1 (1)	15 0	0 F - 00	$\left\lvert\, \begin{gathered}00001111 \\ 00000000\end{gathered}\right.$	$\begin{gathered} 0015 \\ - \\ 0000 \end{gathered}$	$\begin{gathered} \hline \wedge \mathrm{O} \\ - \\ \wedge @ \end{gathered}$		Speed (15-0 (fastest through slowest))
			2 (4)							$\mathrm{X} \mu$ steps
			6 (4)							$\mathrm{Y} \mu$ steps
			10 (4)							$\mathrm{Z} \mu$ steps

Tx/-Delay/Rx	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	$\begin{aligned} & \text { Ctrl- } \\ & \text { char } \end{aligned}$	ASCII def./char.	Description
				Dec.	Hex.	Binary				
Rx	All	1	0	13	OD	00001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator

NOTE: All positions are in microsteps (usteps): 32-bit (4 bytes) positive (unsigned) values, in Little Endian bit order (see Notes).

While all move commands cause movement to occur at a rate of 5,000 microns/second, the "Straight-Line Move ' S ' command is specified with one of sixteen speeds. Actual speed for the can be determined with the following formula: ($5000 / 16$) * ($\mathrm{sp}+1$), where 5,000 is the maximum speed in microns/second and "sp" is the speed level 0 (slowest) through 15 (fastest). For $\mathrm{mm} /$ second or microns/millisecond, multiply result by 0.001 .

Table 4-12. Straight-Line Move 'S' Command Speeds.

Speed Setting $\left(2^{\text {nd }}\right.$ Argument of ' S^{\prime} Command Seq. $)$	$\mathrm{mm} / \mathrm{sec}$ or $\mu \mathrm{m} / \mathrm{ms}$	$\boldsymbol{\mu \mathrm { m } / \mathrm { sec }}$ or $\mathrm{nm} / \mathrm{ms}$	$\mathrm{nm} / \mathrm{sec}$	in/sec or $\mathrm{mil} / \mathrm{ms}$	Percentage of Maximum
$\mathbf{1 5}$	5.0000	5000.0	5000000	0.196850394	100.00%
$\mathbf{1 4}$	4.6875	4687.5	4687500	0.184547244	93.75%
$\mathbf{1 3}$	4.3750	4375.0	4375000	0.172244094	87.50%
$\mathbf{1 2}$	4.0625	4062.5	4062500	0.159940945	81.25%
$\mathbf{1 1}$	3.7500	3750.0	3750000	0.147637795	75.00%
$\mathbf{1 0}$	3.4375	3437.5	3437500	0.135334646	68.75%
$\mathbf{9}$	3.1250	3125.0	3125000	0.123031496	62.50%
$\mathbf{8}$	2.8125	2812.5	2812500	0.110728346	56.25%
$\mathbf{7}$	2.5000	2500.0	2500000	0.098425197	50.00%
$\mathbf{6}$	2.1875	2187.5	2187500	0.086122047	43.75%
$\mathbf{5}$	1.8750	1875.0	1875000	0.073818898	37.50%
$\mathbf{4}$	1.5625	1562.5	1562500	0.061515748	31.25%
$\mathbf{3}$	1.2500	1250.0	1250000	0.049212598	25.00%
$\mathbf{2}$	0.9375	0937.5	937500	0.036909449	18.75%
$\mathbf{1}$	0.6250	0625.0	625000	0.024606299	12.50%
$\mathbf{0}$	0.3125	0312.5	312500	0.012303150	6.25%

4.6.9 Interrupt Straight-Line Move (' ^ ${ }^{\text {C’) Command }}$

This command interrupts a move in progress (only for moves initiated by the "Straight-line" move ('S') command). The command sequence consists of one byte.

Table 4-13. Interrupt a straight-line move in progress (‘^${ }^{\text {© }}$) command.

Tx/-	Ver.	Total Bytes	ByteOffset(Len.)	Value				Alt-keypad \#	Ctrl-char	$\begin{gathered} \text { ASCII } \\ \text { def./- } \\ \text { char. } \end{gathered}$	Description
$\begin{array}{\|c} \text { Delay/- } \\ \mathrm{Rx} \end{array}$				Dec.	Hex.		ary				
Tx	All	1	0	3	03	0000	0011	0003	${ }^{\wedge} \mathrm{C}$	<ETX>	Command
Rx		1	0	13	OD	0000	1101			<CR>	Completion indicator

4.6.10 Move to Specified X-Axis Position ('x' or ' X ') Command

This command moves to a specified position for only the X -axis.
Table 4-14. Move to specified X-axis position (' x ' or ' X ') command.

Tx/-Delay/Rx	Ver.	Total Bytes	Byte (Len.)	Value			Alt-keypad \#	Ctrlchar	ASCII def./char.	Description	
				Dec.	Hex.	Binary					
Tx	All	5	0	$\begin{gathered} \hline 120 \\ \text { or } \\ 90 \end{gathered}$	$\begin{aligned} & 78 \\ & \text { or } \\ & 5 A \end{aligned}$	$\left\|\begin{array}{cc} 0111 & 1000 \\ \text { or } \\ 0101 & 1010 \end{array}\right\|$	$\begin{gathered} \hline 0120 \\ \text { or } \\ 0090 \end{gathered}$		$\begin{aligned} & \hline x^{\prime} \\ & o r \\ & \text { or } \end{aligned}$	Command	
			1 (4)							$\mathrm{X} \mu$ steps	
Rx		1	0	13	OD	\|0000 1101				<CR>	Completion indicator

NOTE: All positions are in microsteps ($\mu s t e p s$): 32-bit (4 bytes) positive (unsigned) values, in Little Endian bit order (see Notes).

4.6.11 Move to Specified Y-Axis Position (' y ' or ' Y ') Command

This command moves to a specified position for only the Y-axis.
Table 4-15. Move to specified Y -axis position (' y ' or ' Y ') command.

Tx/-Delay/Rx	Ver.	Total Bytes	$\begin{array}{\|l} \begin{array}{l} \text { Byte } \\ \text { Offset } \\ \text { (Len.) } \end{array} \end{array}$	Value			Alt-keypad \#	Ctrlchar	ASCII def./char.	Description	
				Dec.	Hex.	Binary					
Tx	All	5	0	$\begin{gathered} 121 \\ \text { or } \\ 91 \end{gathered}$	$\begin{aligned} & \hline 79 \\ & \text { or } \\ & 5 B \end{aligned}$	$\left\|\begin{array}{cc} 0111 & 1001 \\ \text { or } \\ 0101 & 1011 \end{array}\right\|$	$\begin{gathered} 0121 \\ \text { or } \\ 0091 \end{gathered}$		$\begin{aligned} & \text { 'y' } \\ & \text { or } \\ & \text { ' } \end{aligned}$	Command	
			1 (4)							Y μ steps	
Rx		1	0	13	0D	\|0000 1101				<CR>	Completion indicator

NOTE: All positions are in microsteps (usteps): 32-bit (4 bytes) positive (unsigned) values, in Little Endian bit order (see Notes).

4.6.12 Move to Specified Z-Axis Position ('z' or 'Z') Command

This command moves to a specified position for only the Z-axis.
Table 4-16. Move to specified Z-axis position ('z') command.

Tx/-Delay/Rx	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	$\begin{array}{l\|} \hline \text { Ctrl- } \\ \text { char } \end{array}$	$\begin{gathered} \hline \text { ASCII } \\ \text { def./- } \\ \text { char. } \end{gathered}$	Description
				Dec.	Hex.	Binary				
Tx	All	5	0	$\begin{aligned} & \hline 122 \\ & \text { or } \\ & 92 \end{aligned}$	$\begin{aligned} & \text { 7A } \\ & \text { or } \\ & 5 \mathrm{C} \end{aligned}$	$\begin{array}{cc} 0111 & 1010 \\ \text { or } \\ 0101 & 1100 \end{array}$	$\begin{gathered} 0122 \\ \text { or } \\ 0092 \end{gathered}$		$\begin{aligned} & { }^{\prime} z^{\prime} \\ & \text { or } \\ & { }^{\prime} \end{aligned}$	Command
			1 (4)							$\mathrm{Z} \mu$ steps
Rx		1	0	13	OD	00001101			<CR>	Completion indicator

NOTE: All positions are in microsteps (usteps): 32-bit (4 bytes) positive (unsigned) values, in Little Endian bit order (see Notes).

4.6.13 Setting the Angle (' A ') Command

Sets the angle value, in degrees, to match the angle position of the rotary dovetail
Table 4-17. Set the angle ('A') command.

Tx/- Delay/- Rx	Ver.	Total Bytes	Byte Offset (Len.)	Value			$\begin{array}{\|c\|} \hline \text { Alt- } \\ \text { key- } \\ \text { pad \# } \\ \hline \end{array}$	Ctrlchar	ASCII def./- char.	Description
				Dec.	Hex.	Binary				
Tx	All	2	0	65	41	01000001	0065		' ${ }^{\prime}$ '	Command
			1	0 - 90	00 - $5 A$	$\begin{array}{\|c} \hline 0000 \quad 0000 \\ 0-101010 \end{array}$			$\begin{gathered} \text { <NUL> } \\ - \\ \text { ' } \mathrm{z}^{\prime} \end{gathered}$	Angle in degrees between 0 and 90. See Angle Setting \& Movement note
Rx		1	0	13	OD	00001101			<CR>	Completion indicator

4.6.14 Recalibrate (' R ') Command

Recalibrates the connected micromanipulator/stage to 1,000 microns in each axis.
Table 4-18. Recalibrate ('R') command.

$\begin{gathered} \mathrm{Tx} /- \\ \text { Delay/- } \\ \mathrm{Rx} \\ \hline \end{gathered}$	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrlchar	$\begin{gathered} \text { ASCII } \\ \text { def./- } \\ \text { char. } \end{gathered}$	Description
				Dec.	Hex.	Binary				
Tx	All	1	0	82	52	01010010	0082		'R'	Command
Rx		1	0	13	0D	00001101			<CR>	Completion indicator

4.6.15 Notes

1. Task-Complete Indicator: All commands will send back to the computer the "TaskComplete Indicator" to signal the command and its associated function in controller is complete. The indicator consists of one (1) byte containing a value of 13 decimal (0D hexadecimal), and which represents an ASCII CR (Carriage Return).
2. Intercommand Delay: A short delay (usually around 2 ms) is recommended between commands (after sending a command sequence and before sending the next command).
3. Clearing Send/Receive Buffers: Clearing (purging) the transmit and receive buffers of the I/O port immediately before sending any command is recommended.
4. Positions in Microsteps: All positions sent to and received from the controller are in microsteps (μ steps). See Microns/-microsteps conversion table) for conversion between μ steps and microns (micrometers ($\mu \mathrm{m}$)).
5. Ranges and Bounds: See Ranges and Bounds table for exact minimum and maximum values for each axis of each compatible device that can be connected. All move commands must include positive values only for positions - negative positions must never be specified. All positions are absolute as measured from the physical beginning of travel of a device's axis. In application programming, it is important that positional values be checked ($>=0$ and $<=$ max.) to ensure that a negative absolute position is never sent to the controller and that end of travel is not exceeded. All computational relative positioning must always resolve to accurate absolute positions.
6. Absolute Positioning System Origin: The Origin is set to a physical position of travel to define absolute position 0 . The physical Origin position is fixed at beginning of travel (BOT). This means that all higher positions (towards end of travel (EOT)) are positive values; there are no lower positions and therefore no negative values are allowed.
7. Absolute vs. Relative Positioning: Current position ('c') and move commands always use absolute positions. All positions can be considered "relative" to the Origin (Position 0), but all are in fact absolute positions. Any position that's considered to be "relative" to the current position, whatever that might be, can be handled synthetically by external programming. However, care should be taken to ensure that all relative positions are accurately translated to correct absolute positions before initiating a move command.
8. Position Value Typing: All positions sent and received to and from the controller are in microsteps and consist of 32 -bit integer values (four contiguous bytes). Position values can be either positive or negative, so type must be "signed". Although each positional value is transmitted to, or received from, the controller as a sequence of four (4) contiguous bytes, for computer application computational and storage purposes each should be typed as a signed integer ("long" or "signed long" in C/C++; "I32" in LabVIEW, etc.). Note that in Python, incorporating the optional NumPy package brings robust data typing like that used in $\mathrm{C} / \mathrm{C}++$ to your program, simplifying coding and adding positioning accuracy to the application.
9. Position Value Bit Ordering: All 32-bit position values transmitted to, and received from, the controller must be bit/byte-ordered in "Little Endian" format. This means that the least significant bit/byte is last (last to send and last to receive). Byte-order reversal may be required on some platforms. Microsoft Windows, Intel-based Apple Macintosh systems running Mac OS X, and most Intel/AMD processor-based Linux distributions handle byte storage in Little-Endian byte order so byte reordering is not necessary before converting to/from 32-bit "long" values. LabVIEW always handles "byte strings" in "Big Endian" byte order irrespective of operating system and CPU, requiring that the four bytes containing a microsteps value be reverse ordered before/after conversion to/from a multibyte type value (I32, U32, etc.). MATLAB automatically adjusts the endianess of multibyte storage entities to that of the system on which it is running, so explicit byte reordering is generally unnecessary unless the underlying platform is Big Endian. If your development platform does not have built-in Little/Big Endian conversion functions, bit reordering can be accomplished by first swapping positions of the two bytes in each 16 -bit half of the 32 -bit value, and then swap positions of the two halves. This method efficiently and quickly changes the bit ordering of any multibyte value between the two Endian formats (if Big Endian, it becomes Little Endian, and if Little Endian, it becomes then Big Endian).
10. Travel Lengths and Durations: "Move" commands might have short to long distances of travel. If not polling for return data, an appropriate delay should be inserted between the sending of the command sequence and reception of return data so that the next command is sent only after the move is complete. This delay can be auto calculated by determining the distance of travel (difference between current and target positions) and rate of travel. This delay is not needed if polling for return data. In either case, however, an appropriate timeout must be set for the reception of data so that the I/O does not time out before the move is made and/or the delay expires.
11. Movement Speeds: All move commands cause movement to occur at a rate of 5,000 microns/second, except for the "Straight-Line Move 'S' command which can be specified
with one of sixteen speeds. Actual speed for the "Straight-Line Move 'S' command can be determined with the following formula: ($5000 / 16$) * $(\mathrm{sp}+1)$, where 5,000 is the maximum speed in microns/second and "sp" is the speed level 0 (slowest) through 15 (fastest). For mm/second or microns/millisecond, multiply result by 0.001 .

Table 4-19. Straight-Line Move 'S' Command Speeds.

Speed Setting	$\mathrm{mm} / \mathrm{sec}$ or $\mu \mathrm{m} / \mathrm{ms}$	$\mu \mathrm{m} / \mathrm{sec}$ or $\mathrm{nm} / \mathrm{ms}$	$\mathrm{nm} / \mathrm{sec}$	in/sec or $\mathrm{mil} / \mathrm{ms}$	\% of Max.
$\mathbf{1 5}$	5.0000	5000.0	5000000	0.196850394	100.00%
$\mathbf{1 4}$	4.6875	4687.5	4687500	0.184547244	93.75%
$\mathbf{1 3}$	4.3750	4375.0	4375000	0.172244094	87.50%
$\mathbf{1 2}$	4.0625	4062.5	4062500	0.159940945	81.25%
$\mathbf{1 1}$	3.7500	3750.0	3750000	0.147637795	75.00%
$\mathbf{1 0}$	3.4375	3437.5	3437500	0.135334646	68.75%
$\mathbf{9}$	3.1250	3125.0	3125000	0.123031496	62.50%
$\mathbf{8}$	2.8125	2812.5	2812500	0.110728346	56.25%
$\mathbf{7}$	2.5000	2500.0	2500000	0.098425197	50.00%
$\mathbf{6}$	2.1875	2187.5	2187500	0.086122047	43.75%
$\mathbf{5}$	1.8750	1875.0	1875000	0.073818898	37.50%
$\mathbf{4}$	1.5625	1562.5	1562500	0.061515748	31.25%
$\mathbf{3}$	1.2500	1250.0	1250000	0.049212598	25.00%
$\mathbf{2}$	0.9375	0937.5	937500	0.036909449	18.75%
$\mathbf{1}$	0.6250	0625.0	625000	0.024606299	12.50%

12. Move Interruption and Concurrent Dual Manipulator Movements: A command should be sent to the controller for a manipulator only after the task of any previous command for that same manipulator is complete (i.e., the task-completion terminator (CR) is returned associated with the manipulator). One exception is the "Interrupt Move" (${ }^{\wedge} \mathrm{C}$) command, which can be issued while an ' S ' command-initiated move for a manipulator is still in progress. While a move is in progress for a manipulator (e.g., A), another move command sequence can be issued for the other manipulator (i.e., B).
13. Angle Setting \& Movement: Although the set angle command allows for a range of 0° to 90°, the effective range that allows full movement is 1° to $89^{\circ}\left(>0^{\circ}\right.$ and $\left.<90^{\circ}\right)$. If 0° or $90^{\circ}, \mathrm{Z}$ or X axis fails to move, causing single- and multi-axis movement commands to fail. The ideal range for smooth movement is 10° to 80°. Factory default is 30°.
(This page intentionally left blank.)

5. MAINTENANCE

Routine cleaning of the TRIO MPC-100 system is required to prevent excessive dust accumulations. Wipe all exterior surfaces with a dry, soft, cotton cloth.
Periodically inspect all cables and connections to make sure that all connections are made well and that all connectors are well and evenly seated.

6. RECONFIGURATION

6.1 Changing the Rotary Knob Functions on the ROE/Controller

The axis motor assignment of each axis control knob on the ROE can be changed by opening the ROE/Controller cabinet as seen in the figure below and changing cables to appropriate connectors.

Figure 6-1. Locations of the axis connectors inside the ROE/Controller
(This page intentionally left blank.)

APPENDIX A. LIMITED WARRANTY

- Sutter Instrument Company, a division of Sutter Instrument Corporation, limits the warranty on this instrument to repair and replacement of defective components for two years from date of shipment, provided the instrument has been operated in accordance with the instructions outlined in this manual.
- Abuse, misuse, or unauthorized repairs will void this warranty.
- Warranty work will be performed only at the factory.
- The cost of shipment both ways is paid for by Sutter Instrument during the first three months this warranty is in effect, after which the cost is the responsibility of the customer.
- The limited warranty is as stated above and no implied or inferred liability for direct or consequential damages is intended.
- An extended warranty for up to three additional years can be purchased at the time of ordering, or until the original warranty expires. For pricing and other information, please contact Sutter Instrument.

APPENDIX B. ACCESSORIES

W621 150	Ground cable
$\mathbf{2 8 5 2 0 4}$	4-inch dovetail extension
$\mathbf{2 8 5 2 1 0}$	Mounting adapter plate
225RBI	Rotating base
$\mathbf{2 2 1 1 6 5}$	Z-axis vertical extension
BR-AW	Rod holding clamp for XenoWorks® injectors (for rod OD 2-4mm)
MP-ROD	Rod holder (for rod OD 6.25 mm or larger
MP-RISER-0.5	$1 / 2$-inch riser*
MP-RISER-1.0	1-inch riser ${ }^{1}$
MT-78-FS	Large fixed-stage platform
MT-78-FS/M6	Large fixed-stage platform with M6 tapped holes
MT-75	Standard gantry-stand 8.7 to 13.4 in $(22.1(22.098)$ to $33.9(34.036) \mathrm{cm})$
MT-75S	Short gantry-stand 6.7 to 9.6 in $(16.9(17.018)$ to $24.4(24.384) \mathrm{cm})$
MT-75T	Tall gantry-stand 10.7 to 15.4 in $(27.2(27.178)$ to $39.1(39.116) \mathrm{cm})$
MT-75XT	Extra tall gantry-stand 14.7 to 18.5 in $(37.3(37.338)$ to $47(46.99) \mathrm{cm})$

[^0](This page intentionally left blank.)

APPENDIX C. TECHNICAL SPECIFICATIONS

C

Travel
Resolution

Speed
Long Term Stability
Electrical:
Power Adapter:
Input (mains)
Output (to controller)

System Power consumption
Mains fuses

Cables

25 mm on X, Y, and Z axes
Minimal microstep size is 62.5 nanometers per microstep. Display has single micron resolution.
$5 \mathrm{~mm} / \mathrm{sec}$.
< 1 micron/hour drive mechanism

Meanwell GS60A24-P1J
100 - 240 VAC, $50 / 60 \mathrm{~Hz}, 1.4 \mathrm{~A}$
24 V DC, 2.5 A , 60 W Max. (see following table for cable specs)
60-Watts maximum
None replaceable (power protection built into the Power Adapter)
(Refer to the following tables for a description of all possible cables.)

Table C-1. TRIO MPC-100 cables and receptacles/connectors.

Controller Rear Panel Port Connector/-Receptacle	Cable Connector Types	Connects to ...	Cable Type	$\begin{gathered} \text { Cable Max. } \\ \text { Length } \\ \hline \end{gathered}$
Power Adapter 3-pin male connector		Mains power source.	10A, 250V, with safety ground plug	3 meters (approx. 10 feet)
ROE/Controller Cabinet: MANIPULATOR A and MANIPULATOR B (25-Pin DSUB female receptacle)	$\begin{aligned} & \text { 4- DB-25 male } \\ & \text { DB-25 female- } \\ & \text { (Straight-through) } \end{aligned}$	$\begin{gathered} \text { MP-845/M, } \\ \text { MP-845S/M, } \\ \text { MP-245/M* or } \\ \text { MP-285/M** } \end{gathered}$	Minimum of 26 awg stranded wire with 500 Volt.	$\left\lvert\, \begin{gathered} 3 \text { meters } \\ \text { (approx. } 10 \\ \text { feet) } \end{gathered}\right.$
Power Adapter	ID $2.1 \times$ OD 5.5 mm Barrel Plug (male)-	ROE/Controller Cabinet: POWER receptacle (center pin positive)	$\begin{aligned} & \text { UL1185 } \\ & \text { 18AWG } \end{aligned}$	$\begin{aligned} & 1.8 \text { meters } \\ & \text { (approx. } 6 \\ & \text { feet) } \end{aligned}$
ROE/Controller Cabinet: GROUND (1-pin Banana-style female receptacle)	$\begin{gathered} 4-\text { Banana male } \\ \rightarrow \text { Alligator clip } \\ \text { (hooded) } \\ \hline \end{gathered}$	a ground/-earth source (user deter-mined)		
ROE/Controller Cabinet: USB	$\left.\right\|_{-B} ^{4-A}$	Computer USB port		

* DB25 to DB26HD adapter required.
** Including 3DMS \& MT-78 stages, MOM \& SOM objective movers.

Dimensions:

MPC-100 ROE/controller
$6.25 \times 8 \times 5.9$ in $\mid 15.9 \times 20.3 \times 14.986 \mathrm{~cm}$

Weight:

MPC-100 ROE/controller
MP-845 micromanipulator
MP-845S micromanipulator
2.3 lbs | 1.04 kg
$3.5 \mathrm{lbs} . \mid 1.6 \mathrm{~kg}$
7.7 lbs | 3.5 kg

APPENDIX D. QUICK REFERENCE

D.1. Manual Operation

MANIPULATOR SELECT: Selects A or B manipulator.
HOME: Move to defined home position. Press again to pause/resume.
WORK: Move to defined work position. Press again to pause/resume.
PULSE (ANGLE SET): Advances diagonal axis in $2.85 \mu \mathrm{~m}$ steps.
Hold 3 -sec. for angle-set mode (active for 10 sec.) - use Knob D to change angle (0 - 90 degrees).
RELATIVE: Toggles between Relative and Absolute position moves.
Hold 3 -sec. for setting relative mode origin to current absolute position.
SPEED (LOCK): Cycles through Speed 0 (normal) through 3.
Hold 3 sec. to enter lock (quiet) mode
D-Axis Movement (Synthetic); select angle in degrees when in ANGLE SET mode.

Setting Home, Work, or Relative Mode Origin Position: To set position, hold down HOME, WORK, or RELATIVE button for 3 seconds until beep sounds.
Screen-color mode indications: Green $=$ Absolute position; Blue $=$ Relative position; Red $=$ Movement in progress or in quiet (LOCK) mode; knobs disabled.
Movement Knobs Disabling and Lock (Quiet) Mode: Movement knobs are disabled during movement to Home, Work, external movement command, or while in Lock Mode.
Axis Movement Order: HOME: X \& Z first, Y last. WORK: Y first. X \& Z last.
$\mathrm{X} \& \mathrm{Z}$ movement precedence and simultaneity is determined by ANGLE setting: At 45°, movement is simultaneous; at $<45^{\circ}, \mathrm{Z}$ has precedence; at $>45^{\circ}, \mathrm{X}$ has precedence.

D.2. Configuration

Table D-1. Configuration Switches 1 - 10

Sw \#	Definition	State	Setting	Position
1	X-Axis Knob Rotation for Forward (+) Movement	Clockwise	Off*	Up*
		Counter	On	Down
2	Y-Axis Knob Rotation for Forward (+) Movement	Clockwise	Off*	Up*
		Counter	On	Down
3	Z-Axis Knob Rotation for Forward (+) Movement	Clockwise	Off*	Up*
		Counter	On	Down
4	D-Axis Knob Rotation for Forward (+) Movement	Clockwise	Off*	Up*
		Counter	On	Down
5	Y Axis Lock Out for Homing	Enabled	Off	Up
		Disabled	On*	Down*
6	Calibration Homing on Power On **	Disabled	Off	Up
		Enabled	On*	Down*
7	Reserved		Off*	Up*
8	Reserved		Off*	Up*
9	Electromechanical device compatibility ***	MP-x45[S]/M	Off*	Up*
		MP-285/M	On	Down
10	Linear/nonlinear manual movement		Off*	Up*

[^1]
D.3. External Control

Controlling the TRIO MPC-100 externally via computer is accomplished by sending commands over the USB interface between the computer and the USB connector on the rear panel of the TRIO MPC-100 controller/ROE. The USB device driver for Windows is downloadable from Sutter Instrument's web site (www.sutter.com). The TRIO MPC-100 requires Sutter Instrument's USB CDM (Combined Driver Model) Version 2.10 .00 or higher. The CDM device driver consists of two device drivers: 1) USB device driver, and 2) VCP (Virtual COM Port) device driver. Install the USB device driver first, followed by the VCP device driver. The VCP device driver provides a serial RS-232 I/O interface between a Windows application and the TRIO MPC-100. Although the VCP device driver is optional, its installation is recommended even if it is not going to be used. Once installed, the VCP can be enabled or disabled.

The CDM device driver package provides two I/O methodologies over which communications with the controller over USB can be conducted: 1) USB Direct (D2XX mode), or 2) Serial RS-232 asynchronous via the VCP device driver (VCP mode). The first method requires that the VCP device driver not be installed, or if installed, that it be disabled. The second method requires that the VCP be installed and enabled.

Virtual COM Port (VCP) Serial Port Settings: The following table lists the required RS-232 serial settings for the COM port (COM3, COM5, etc.) generated by the installation or enabling of the VCP device driver.

Table D-2. USB-VCP interface serial port settings.

Property	Setting
Data ("Baud") Rate (bits per second (bps))	57600
Data Bits	8
Stop Bits	1
Parity	None
Flow Control	None

The settings shown in the above table can be set in the device driver's properties (via the Device Manager if in Windows) and/or programmatically in your application.

Protocol and Handshaking: Command sequences do not have terminators. All commands return an ASCII CR (Carriage Return; 13 decimal, 0D hexadecimal) to indicate that the task associated with the command has completed. When the controller completes the task associated with a command, it sends ASCII CR back to the host
computer indicating that it is ready to receive a new command. If a command returns data, the last byte returned is the task-completed indicator.
Command Sequence Formatting: Each command sequence consists of at least one byte, the first of which is the "command byte". Those commands that have parameters or arguments require a sequence of bytes that follow the command byte. No delimiters are used between command sequence arguments, and command sequence terminators are not used. Although most command bytes can be expressed as ASCII displayable/printable characters, the rest of a command sequence must generally be expressed as a sequence of unsigned byte values (0 255 decimal; 00 - FF hexadecimal, or 00000000 11111111 binary). Each byte in a command sequence transmitted to the controller must contain an unsigned binary value. Attempting to code command sequences as "strings" is not advisable. Any command data returned by the controller should be initially treated as a sequence of unsigned byte values upon reception. Groups of contiguous bytes can later be combined to form larger values, as appropriate (e.g., 2 bytes into 16 -bit "word", or 4 bytes into a 32 -bit "long" or "double word"). For the TRIO MPC-100, all axis position values (number of microsteps) are stored as "unsigned long" 32-bit positive-only values, and each is transmitted and received to and from the controller as four contiguous bytes.
Axis Position Command Parameters: All axis positional information is exchanged between the controller and the host computer in terms of microsteps. Conversion between microsteps and microns (micrometers) is the responsibility of the software running on the host computer (see Microns/microsteps conversion table for conversion factors).

Microsteps are stored as positive 32 -bit values ("long" (or optionally, "signed long"), or "unsigned long" for C/C++; "I32" or "U32" for LabVIEW). "Unsigned" means the value is always positive; negative values are not allowed. The positive-only values can also be stored in signed type variables, in which case care must be taken to ensure that only positive values are exchanged with the controller.
The 32 -bit value consists of four contiguous bytes, with a byte/bit-ordering format of Little Endian ("Intel") (most significant byte (MSB) in the first byte and least significant (LSB) in the last byte). If the platform on which your application is running is

Little Endian, then no byte order reversal of axis position values is necessary. Examples of platforms using Little Endian formatting include any system using an Intel/AMD processor (including Microsoft Windows and Apple Mac OS X).

If the platform on which your application is running is Big Endian (e.g., Motorola PowerPC CPU), then these 32-bit position values must have their bytes reverse-ordered after receiving from, or before sending to, the controller. Examples of Big-Endian platforms include many non-Intel-based systems, LabVIEW (regardless of operating system \& CPU), and Java (programming language/environment). MATLAB and Python (script programming language) are examples of environments that adapt to the system on which each is running, so LittleEndian enforcement may be needed if running on a Big-Endian system. Some processors (e.g., ARM) can be configured for specific endianess.

Microsteps and Microns (Micrometers): All coordinates sent to and received from the controller are in microsteps. To convert between microsteps and microns (micrometers), use the following conversion factors (multipliers):

Table D-3. Microns/microsteps conversion.

TRIO MPC-100 Controller with Device	From/To Units	Conversion Factor (multiplier)
MP-845/M, MP-845S/M, or MP-245/M* micromanipulator	μ steps $\rightarrow \mu \mathrm{m}$	0.09375
	$\mu \mathrm{~m} \rightarrow \mu$ steps	10.66666666667
MP-285/M micromanipulator;	μ steps $\rightarrow \mu \mathrm{m}$	0.125
3DMS or MT-78 stage; MOM or SOM objective mover	$\mu \mathrm{m} \rightarrow \mu$ steps	8

* DB25 to DB26HD adapter required for MP-245/M.

For accuracy in your application, type these conversion factors as "double" (avoid using the "float" type as it lacks precision with large values). When converting to microsteps, type the result as a 32-bit "long", "signed long", or "I32" integer. When converting to microns, type the result as "double" (64-bit double-precision floating-point values).

Table D-4. Ranges and bounds.

Device	Axis	Len. (mm)	Origin	Microns $($ Micromet ers ($\mu \mathrm{m}))$	Microsteps $(\mu$ steps)
MP-845/M, MP-845S/M, or MP-245/M* micromanipulator	X, Y,	25	BOT	$0-25,000$	$0-266,667$
MP-285/M micromanipulator 3DMS or MT-78 Stage; MOM or SOM objective mover	X, Y,	25	BOT	$0-25,000$	$0-200,000$

[^2]NOTE: Origin is a physical position of travel that defines the center of the absolute position coordinate system (i.e., absolute position 0).
Physical Positions: BOT (Beginning Of Travel), COT (Center Of Travel), \& EOT (End Of Travel).
In the TRIO MPC-100, the Origin is fixed at BOT.
NOTE: Travel length of each axis is automatically determined by end-of-travel sensor.

Command Reference: The following table lists all the external-control commands for the TRIO MPC100.

Table D-5. TRIO MPC-100 external control commands

Command	Tx/- Delay/- Rx	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrlchar	ASCII def./- char.	Description	
					Dec.	Hex.	Binary					
Get Active Device \& Firmware Version ('K')	Tx	All	1	0	75	4B	\|0100 1011	0075		K	Command. Returns the currently active device, along with firmware version number.	
	Rx	All	4	0	1-2	$\begin{gathered} 01 \\ - \\ 02 \end{gathered}$	$\left\|\begin{array}{c}0000 \\ 00000 \\ 00010\end{array}\right\|$		$\begin{aligned} & \hline \wedge_{\mathrm{A}} \\ & - \\ & \wedge_{\mathrm{B}} \end{aligned}$	$\left\|\begin{array}{c} <\mathrm{SOH}> \\ - \\ <\mathrm{STX}> \end{array}\right\|$	Currently-active device (1-2 (A B)).	
				1							Major version number (e.g., if ver. = 2.62 , then byte $=2$)	
				2							Minor version number (e.g., if ver. $=2.62$, then byte $=62$)	
				3	13	0D	00001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator	
Change Active Device ('I')	Tx	All	2	0	73	49	01001001	0073		I	Command. Makes the specified device active, ensuring that all other commands are directed to that device.	
				1	1-2	$\begin{gathered} \hline 01 \\ - \\ 02 \end{gathered}$	$\begin{array}{\|cc\|} \hline 0000 & 0001 \\ 0000 & 0010 \end{array}$	$\begin{gathered} 0001 \\ - \\ 0002 \end{gathered}$	$\begin{gathered} \wedge^{\wedge} \mathrm{A} \\ - \\ \wedge_{\mathrm{B}} \end{gathered}$	<SOH> - <STX>	Manipulator to be made active (by value: 1 (for A) or 2 (for B)	
	Rx	All	2	0	1-2	01 - 02	$\left\|\begin{array}{c}0000 \\ 00001 \\ 000010\end{array}\right\|$		${ }^{\wedge}{ }^{\wedge} \mathrm{A}$	$\left\lvert\, \begin{gathered} \langle\mathrm{SOH}\rangle \\ - \\ <\mathrm{STX}\rangle \end{gathered}\right.$	Manipulator value specified	
				1	13	0D	00001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator	
Get Current Position and Angle ('c' or ‘C')	Tx	All	1	0	99 or 67	$\begin{aligned} & \hline 63 \\ & \text { or } \\ & 43 \end{aligned}$	$\left\|\begin{array}{cc} 0110 & 0011 \\ \text { or } \\ 0100 & 0011 \end{array}\right\|$	$\begin{gathered} 0099 \\ \text { or } \\ 0043 \end{gathered}$		$\begin{aligned} & \hline \hline \text { 'c' }^{\prime} \\ & \text { or } \\ & { }^{\prime}{ }^{\prime} \end{aligned}$	Command. Returns the current positions (μ steps) of X, Y, \& Z axes and angle setting (degrees).	
	Rx .	All	14		Three 4-byte (32-bit) values (current positions in μ steps of X, Y, \& Z), + 1 byte for angle, $\&+1$ byte for completion indicator. See Ranges table for minimum and maximum values.							
				0 (4)							X pos. in μ steps	
				4 (4)							Y pos. in μ steps	
				8 (4)							Z pos. in μ steps	
				12	0-90	00-5A	$\left\lvert\, \begin{gathered}0000 \\ 00000 \\ 0101 \\ \text { - }\end{gathered}\right.$			<NUL> - Z	Angle in degrees (0-90)	
				13	13	0D	00001101		${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator	
Move to HOME Position ('h')	Tx	All	1	0	104	68	01101000	0104		' h '	Command. Moves to the position saved by the controller's HOME button. X \& Z move first (angle determines order/simultaneity), and Y last.	
	Rx	All	1	0	13	0D	\|0000 1101				<CR>	Completion indicator
Move to WORK Position ('w')	Tx	All	1	0	119	77	01110111	0119		'w'	Command. Moves to the position saved by the controller's WORK button. Y moves first, and X \& Z last (angle determines order/simultaneity).	
	Rx	All	1	0	13	OD	\|0000 1101				<CR>	Completion indicator

Command	Ty/-Delay/-Rx	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrl- char	$\begin{gathered} \text { ASCII } \\ \text { def./- } \\ \text { char. } \end{gathered}$	Description	
					Dec.	Hex.	Binary					
Move to Specified "Home" Position ('H')	Tx	All	13	0	72	48	01001000	0072		'H'	Command. Move all 3 axes to specified position, moving X \& Z (angle determines order/simultaneity), and \mathbf{Y} last (see Ranges table).	
				1 (4)							$\mathrm{X} \mu$ steps	
				5 (4)							$\mathrm{Y} \mu$ steps	
				9 (4)							$\mathrm{Z} \mu$ steps	
	Rx	All	1	0	13	OD	\|0000 1101			${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator
Move to Specified "Work" Position ('W')	Tx	All	13	0	87	57	01010111	0087		'W'	Command. Move all 3 axes to specified position, moving \mathbf{Y} first, and X \& Z last (angle determines order/simultaneity) (see Ranges table).	
				1 (4)							$\mathrm{X} \mu$ steps	
				5 (4)							Y μ steps	
				9 (4)							$\mathrm{Z} \mu$ steps	
	Rx	All	1	0	13	OD	\|0000 1101			${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator
Move in Straight Line to Specified Position at Specified Speed ('S')	Tx	All	14	0	83	53	01010011	0083		'S'	Command. Move all three axes simultaneously in a straight line to specified position (see Ranges table).	
				1 (1)	$\begin{gathered} \hline 15 \\ - \\ 0 \end{gathered}$	$\begin{gathered} \hline 0 \mathrm{~F} \\ \overline{00} \end{gathered}$	$\begin{array}{\|cc\|} \hline 0000 & 1111 \\ 0000 & 0000 \end{array}$	$\begin{gathered} \hline 0015 \\ -\quad \\ 0000 \end{gathered}$	$\begin{aligned} & \hline \text { ^O } \\ & - \\ & \text { ^@ } \end{aligned}$		Speed (15-0 (fastest through slowest))	
				2 (4)							$\mathrm{X} \mu$ steps	
				6 (4)							Y μ steps	
				10 (4)							$\mathrm{Z} \mu$ steps	
	Rx	All	1	0	13	OD	\|0000 1101			${ }^{\wedge} \mathrm{M}$	<CR>	Completion indicator
Interrupt Straight-Line Move (^C)	Tx	All	1	0	3	03	00000011	0003	${ }^{\wedge} \mathrm{C}$	<ETX>	Command. Interrupts a move in progress (only for moves initiated by the "Straight-line" move ('S') command).	
	Rx	All	1	0	13	0D	\|0000 1101			<CR>	Completion indicator	
Move to specified X axis Position (' x ' or ' X ')	Tx	All	5	0	$\begin{gathered} \hline \hline 120 \\ \text { or } \\ 90 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 78 \\ & \text { or } \\ & 5 \mathrm{~A} \\ & \hline \end{aligned}$	$\left.\begin{array}{\|cc\|} \hline 0111 & 1000 \\ \text { or } \\ 0101 & 1010 \end{array} \right\rvert\,$	$\begin{gathered} \hline 0120 \\ \text { or } \\ 0090 \end{gathered}$		$\begin{aligned} & \hline \text { 'x' } \\ & \text { or } \\ & \text { ' } x^{\prime} \\ & \hline \end{aligned}$	Command. Move X axis to specified position (see Ranges table).	
				1 (4)							$\mathrm{X} \mu$ steps	
	Rx	All	1	0	13	0D	\|0000 1101				<CR>	Completion indicator
Move to specified Y axis Position ('y' or 'Y')	Tx	All	5	0	$\begin{gathered} \hline \hline 121 \\ \text { or } \\ 91 \end{gathered}$	$\begin{aligned} & \hline \hline 79 \\ & \text { or } \\ & 5 B \end{aligned}$	$\left.\begin{array}{\|cc\|} \hline 0111 & 1001 \\ \text { or } \\ 0101 & 1011 \end{array} \right\rvert\,$	$\begin{gathered} \hline 0121 \\ \text { or } \\ 0091 \end{gathered}$		$\begin{aligned} & \hline \text { 'y' } \\ & o r \\ & \text { or } \\ & \hline Y^{\prime} \end{aligned}$	Command. Move Y axis to specified position (see Ranges table).	
				1 (4)							$\mathrm{Y} \mu$ steps	
	Rx	All	1	0	13	OD	\|0000 1101				<CR>	Completion indicator

Command	$\left\|\begin{array}{c} \mathrm{Tx} /- \\ \text { Delay/- } \\ \mathrm{Rx} \end{array}\right\|$	Ver.	Total Bytes	Byte Offset (Len.)	Value			Alt-keypad \#	Ctrlchar	ASCII def./- char.	Description	
					Dec.	Hex.	Binary					
Move to specified Z axis Position ('z' or 'Z')	Tx	All	5	0	$\begin{gathered} 122 \\ \text { or } \\ 92 \end{gathered}$	$\begin{aligned} & 7 \mathrm{~A} \\ & \text { or } \\ & 5 \mathrm{C} \end{aligned}$	$\left\|\begin{array}{cc} 0111 & 1010 \\ \text { or } \\ 0101 & 1100 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 0122 \\ \text { or } \\ 0092 \\ \hline \end{array}$		$\begin{gathered} \prime z^{\prime} \\ \text { or } \\ \text { ' } \end{gathered}$	Command. Move Z-axis to specified position (see Ranges table).	
				1 (4)							Z μ steps	
	Rx	All	1	0	13	OD	\|0000 1101				<CR>	Completion indicator
Enter Angle ('A')	Tx	All	2	0	65	41	01000001	0065		' ${ }^{\text {a }}$	Command. Sets the angle value, in degrees, to match the angle position of the rotary dovetail.	
				1	$\begin{gathered} \hline 0 \\ - \\ 90 \end{gathered}$	$\begin{gathered} \hline 00 \\ - \\ 5 \mathrm{~A} \end{gathered}$	$\left\|\begin{array}{cc} 0000 & 0000 \\ 0101 & 1010 \end{array}\right\|$	$\begin{gathered} \hline 0000 \\ - \\ 0090 \end{gathered}$		$\begin{array}{\|c\|} \hline \text { <NUL> } \\ - \\ { }^{2} z^{\prime} \end{array}$	Angle in degrees between 0 and 90. See Angle Setting \& Movement note	
	Rx	All	1	0	13	OD	\|0000 1101				<CR>	Completion indicator
Recalibrate ('R')	Tx	2.6	1	0	82	52	01010010	0082		'R'	Command. Causes the currently active manipulator to recalibrate.	
	Rx	2.6	1	0	13	0D	\|0000 1101				<CR>	Completion indicator
Query Moving State ('q' or ' Q ')	Tx	2.6	1	0	$\begin{aligned} & \hline \hline 81 \\ & \text { or } \\ & 113 \end{aligned}$	$\begin{aligned} & \hline \hline 51 \\ & \text { or } \\ & 71 \end{aligned}$	$\left\lvert\, \begin{array}{ccc} \hline 1001 & 0001 \\ \text { or } \\ 0111 & 0001 \end{array}\right.$	$\begin{array}{\|c} 0081 \\ \text { or } \\ 0113 \end{array}$		$\begin{aligned} & \hline \hline{ }^{\prime} q^{\prime} \\ & \text { or } \\ & { }^{\prime} Q^{\prime} \end{aligned}$	Command. Reports the state of movement for each device.	
	Rx	2.6	3	0	0	00	\|0000 $0000 \mid$		${ }^{\wedge}$	<NUL>	Device 1: Not moving	
					1	01	00000001		${ }^{\wedge} \mathrm{A}$	<SOH>	Device 1: Movement in progress	
				1	0	00	00000000		${ }^{\wedge}$ @	<NUL>	Device 2: Not moving	
					1	01	00000001		\wedge	<SOH>	Device 2: Movement in progress	
				2	13	0D	00001101			<CR>	Completion indicator	

NOTES:

1. Task-Complete Indicator: All commands will send back to the computer the "Task-Complete Indicator" to signal the command and its associated function in controller is complete. The indicator consists of one (1) byte containing a value of 13 decimal (0 D hexadecimal), and which represents an ASCII CR (Carriage Return).
2. Intercommand Delay: A short delay (usually around 2 ms) is recommended between commands (after sending a command sequence and before sending the next command).
3. Clearing Send/Receive Buffers: Clearing (purging) the transmit and receive buffers of the I/O port immediately before sending any command is recommended.
4. Positions in Microsteps: All positions sent to and received from the controller are in microsteps (μ steps). See Microns/microsteps conversion table) for conversion between μ steps and microns (micrometers ($\mu \mathrm{m}$)).
5. Ranges and Bounds: See Ranges and Bounds table for exact minimum and maximum values for each axis of each compatible device that can be connected. All move commands must include positive values only for positions - negative positions must never be specified. All positions are absolute as measured from the physical beginning of travel of a device's axis. In application programming, it is important that positional values be checked ($>=0$ and $<=$ max.) to ensure that a negative absolute position is never sent to the controller and that end of travel is not exceeded. All computational relative positioning must always resolve to accurate absolute positions.
6. Absolute Positioning System Origin: The Origin is set to a physical position of travel to define absolute position 0 . The physical Origin position is fixed at beginning of travel (BOT). This means that all higher positions (towards end of travel (EOT)) are positive values; there are no lower positions and therefore no negative values are allowed.
7. Absolute vs. Relative Positioning: Current position (' c ') and move commands always use absolute positions. All positions can be considered "relative" to the Origin (Position 0), but all are in fact absolute positions. Any position that's considered to be "relative" to the current position, whatever that might be, can be handled synthetically by external programming. However, care should be taken to ensure that all relative positions are accurately translated to correct absolute positions before initiating a move command.
8. Position Value Typing: All positions sent and received to and from the controller are in microsteps and consist of 32 -bit integer values (four contiguous bytes). Position values can be either positive or negative, so type must be "signed". Although each positional value is transmitted to, or received from, the controller as a sequence of four (4) contiguous bytes, for computer application computational and storage purposes each should be typed as a signed integer ("long" or "signed long" in C/C++; "I32" in LabVIEW, etc.). Note that in Python, incorporating the optional NumPy package brings robust data typing like that used in $\mathrm{C} / \mathrm{C}++$ to your program, simplifying coding and adding positioning accuracy to the application.
9. Position Value Bit Ordering: All 32 -bit position values transmitted to, and received from, the controller must be bit/byte-ordered in "Little Endian" format. This means that the least significant bit/byte is last (last to send and last to receive). Byte-order reversal may be required on some platforms. Microsoft Windows, Intel-based Apple Macintosh systems running Mac OS X, and most Intel/AMD processorbased Linux distributions handle byte storage in LittleEndian byte order so byte reordering is not necessary before converting to/from 32-bit "long" values. LabVIEW always handles "byte strings" in "Big Endian" byte order irrespective of operating system and CPU, requiring that the four bytes containing a microsteps value be reverse ordered before/after conversion to/from a multibyte type value (I32, U32, etc.). MATLAB automatically adjusts the endianess of multibyte storage entities to that of the system on which it is running, so explicit byte reordering is generally unnecessary unless the underlying platform is Big Endian. If your development platform does not have built-in Little/Big Endian conversion functions, bit reordering can be accomplished by first swapping positions of the two bytes in each 16 -bit half of the 32 -bit value, and then swap positions of the two halves. This method efficiently and quickly changes the bit ordering of any multibyte value between the two Endian formats (if Big Endian, it becomes Little Endian, and if Little Endian, it becomes then Big Endian).
10. Travel Lengths and Durations: "Move" commands might have short to long distances of travel. If not polling for return data, an appropriate delay should be inserted between the sending of the command sequence and reception of return data so that the next command is sent only after the move is complete. This delay can be auto calculated by determining the distance of travel (difference between current and target positions) and rate of travel. This delay is not needed if polling for return data. In either case, however, an appropriate timeout must be set for the reception of data so that the I/O does not time out before the move is made and/or the delay expires.
11. Movement Speeds: All move commands cause movement to occur at a rate of 5,000 microns/second, except for the "Straight-Line Move 'S' command which can be specified with one of sixteen speeds. Actual speed for the "StraightLine Move ' S ' command can be determined with the following formula: $(5000 / 16) *(\mathrm{sp}+1)$, where 5,000 is the maximum speed in microns/second and "sp" is the speed level 0 (slowest) through 15 (fastest). For mm/second or microns/millisecond, multiply result by 0.001 .

Table D-6. Straight-Line Move 'S' Command Speeds.

Speed Setting	$\mathrm{mm} / \mathrm{sec}$ or m / ms	$\boldsymbol{\mu \mathrm { m } / \mathrm { sec }}$ or $\mathrm{nm} / \mathrm{ms}$	$\mathrm{nm} / \mathrm{sec}$	in/sec or $\mathrm{mil} / \mathrm{ms}$	$\%$ of Max.
$\mathbf{1 5}$	5.0000	5000.0	5000000	0.196850394	100.00%
$\mathbf{1 4}$	4.6875	4687.5	4687500	0.184547244	93.75%
$\mathbf{1 3}$	4.3750	4375.0	4375000	0.172244094	87.50%
$\mathbf{1 2}$	4.0625	4062.5	4062500	0.159940945	81.25%
$\mathbf{1 1}$	3.7500	3750.0	3750000	0.147637795	75.00%
$\mathbf{1 0}$	3.4375	3437.5	3437500	0.135334646	68.75%
$\mathbf{9}$	3.1250	3125.0	3125000	0.123031496	62.50%
$\mathbf{8}$	2.8125	2812.5	2812500	0.110728346	56.25%
$\mathbf{7}$	2.5000	2500.0	2500000	0.098425197	50.00%
$\mathbf{6}$	2.1875	2187.5	2187500	0.086122047	43.75%
$\mathbf{5}$	1.8750	1875.0	1875000	0.073818898	37.50%
$\mathbf{4}$	1.5625	1562.5	1562500	0.061515748	31.25%
$\mathbf{3}$	1.2500	1250.0	1250000	0.049212598	25.00%
$\mathbf{2}$	0.9375	0937.5	937500	0.036909449	18.75%
$\mathbf{1}$	0.6250	0625.0	625000	0.024606299	12.50%

12. Move Interruption and Concurrent Dual Manipulator

Movements: A command should be sent to the controller for a manipulator only after the task of any previous command for that same manipulator is complete (i.e., the taskcompletion terminator (CR) is returned associated with the manipulator). One exception is the "Interrupt Move" (${ }^{\wedge} \mathrm{C}$) command, which can be issued while an ' S ' commandinitiated move for a manipulator is still in progress. While a move is in progress for a manipulator (e.g., A), another move command sequence can be issued for the other manipulator (i.e., B).
13. Angle Setting \& Movement: Although the set angle command allows for a range of 0° to 90°, the effective range that allows full movement is 1° to $89^{\circ}\left(>0^{\circ}\right.$ and $\left.<90^{\circ}\right)$. If 0° or $90^{\circ}, \mathrm{Z}$ or X axis fails to move, causing single- and multi-axis movement commands to fail. The ideal range for smooth movement is 10° to 80°. Factory default is 30°.

NOTES:

INDEX

[
[SPEED]/LOCK button 27
A
accessories 45
C
cleaning. 43
configuration 49
Configuration 20
Configuration switches 20
controller cable specs 48
Controls
TRIO MPC-100 20
Power switch 20
D
disclaimer 3
E
Electrical Connections 19
external control
absolute positioning system origin 39, 54
absolute vs. relative positioning 39, 54
angle setting \& movement 40, 55
axis position command parameters 30, 50
clearing send/receive buffers 38, 54
intercommand delay 38, 54
Interrupt straight-line move (${ }^{\wedge}{ }^{\circ}{ }^{\prime}$) command36
microsteps and microns (micrometers) ... 31, 33, 51
Move in straight line to specified position at specified speed ('S') command 35
move interruption 40, 55
Move to specified X-axis position command 36
Move to specified Y-axis position command 37
Move to specified Z-axis position command 37
movement speeds 40, 55
notes 38
position value bit ordering 39, 55
position value typing 39, 54
positions in microsteps 38, 54
protocol and handshaking 29, 50
ranges and bounds 38, 54
Recalibrate ('R') command 38
Setting the angle ('A') command. 37
task-complete indicator 38, 54
travel lengths and durations 39, 55
Virtual COM Port (VCP) serial port settings 29,50
External control
Move to specified 34
external-control
travel distances and bounds 31
external-control commands
' ${ }^{\text {' } \mathrm{C}}$ ' command 36
'A' command 37
' c ' command 32
' C ' command 32
' h ' command 33
' H ' command 34
'I' command 32
' K ' command 31
' R ' command 38
' S ' command 35
' w ' command 33
'W' command 34
' x ' command 36
' X ' command 36
' y ' command 37
' Y ' command 37
' z ' command 37
' Z ' command. 37
Change active device ('I') 32
Change active device ('I') command 32
Get active device \& firmware version ('K') command 31
Get Current Position 31, 32
notes 38
External-control commands Move to specified 34
F
fuses, mains. 47
fuses, replacement mains 3
G
glasswareprecautions4
H
headstage Exchange 28
HOME button (while moving to Home) 27
I
input
voltage 47
Installation
electrical connections 19
General 17
headstage mounting 18
initial operating instructions 19
MP-845 series mounting 17
other accessories 18
ROE/Controller rear panel controls and configuration 20
configuration switch 10
linear/nonlinear manual movement. 22
configuration switch 9
electromechanical de 22
configuration switches 20
locking out Y-movement homing. 21
sensor test. 21
setting axis directionality 20
Switches 7 \& 8 21
power switch 20
reserved configuration switches 21
Installation 17
Introduction
Components 11
Overview
Description 13
Features 13
Overview 12
Introduction 11
L
Locking out Y-movement homing. 21
M
mains fuses 3, 47
voltage
voltage 47 47
Maintenance 43
manual operation 49
Micropipette Exchange 28
Mounting
headstage 18
0
Operations
control operations 24
headstage exchange 28
maximum positive position values 24
micropipette exchange 28
mode indications 27
movement knobs disabling and LOCK Mode27
moving to the Home Position 25
moving to the Work Position 26
pausing Home movements 27
pausing Work movements 27
Pulse Mode and diagonal movement 28
ROE axis knob movement speed control 27
setting Absolute/Relative coordinates mode26
setting position for HOME and WORK 24
setting the angle of the pipette/headstage holder 25
display 23
initial startup 23
manipulator select switch 24
R
Reconfiguration 43
changing rotary knob functions on the ROE. 43
Reserved switches 7 \& 8 21
Ssafety warningsmains fuse3
safety warnings \& precautions operational. 4
SAFETY WARNINGS \& PRECAUTIONS 3
electrical 3
Sensor test 21
Setting axis directionality 20
SPEED button 27
Switches 7 \& 8 21
T
technical specifications 47
dimensions. 48
drift 47
electrical 47
cables. 47
mains fuses 47
power adapter 47
input (mains) 47
output (to controller) 47
system power consumption 47
resolution 47
speed 47
travel 47
weight 48
V
voltage
input 47
mains. 47

NOTES

NOTES

[^0]: * Risers can be combined to achieve desired height

[^1]: * Normal operation (factory default).
 ** Switch 6 OFF (up) to retain axis positions on power-off.
 *** Switch 9 OFF (up) for MP-845[SJM \& MP-245/M; ON (down) for MP285/M \& related devices (3DMS, MT-78, MOM/SOM objective movers). **** Contact Sutter Instrument tech. support for more information.

[^2]: * DB25 to DB26HD adapter required for MP-245/M.

