DNA/RNA Quantification Using DIPUV-Mini and a Tidas Spectrometer DATE: 04/27/2011 Author: Alexander Dickson

Abstract:

Concentrations of DNA in solution (31µg/mL and 688µg/mL) were measured with a spectrometer and UV/Vis light source in a DIPUV-Mini. Due to the 2mm pathlength, use of a DIPUV-Mini does not require a pre-measurement dilution within this concentration range, thus a potential source of error was eliminated.

Experimental Procedure:

Standard solutions of DNA (Sigma D1626) were prepared gravimetrically using $18.2M\Omega/cm$ ultrapurified water as a solvent. Solutions were prepared between $0.0\mu g/mL$ and $687.6\mu g/mL$.

Measurements were taken in triplicate using a DIPUV-Mini. The DIPUV-Mini was connected to a Tidas I spectrometer (PN TIDAS-I) and a UV/Vis light source (PN D4H).

Data were collected in 1nm increments across the full range of the instrument (190nm-720nm). The instrument was configured such that reference measurements yielded an 80% total intensity. All measurements utilized $18.2M\Omega/cm$ ultrapurified water as a reference solution.

Results:

Experimental results are presented in Table 1:

Absorbance
@260nm [AU]
-0.0017
0.1116
0.1945
0.3012
0.3821
0.4551
0.8399
1.2409
1.5639
1.7340

Table 1: DNA Concentrations and ResultantAbsorbance Values

Since absorbance with respect to concentration follows the Beer-Lambert Law,

$$A = \varepsilon lc$$

expected absorbance values were calculated from the DNA solution concentrations. Literature values of ϵ for dsDNA are listed as 0.020μ g/ml*cm.

Experimental data can be found in Figure 1 with the calculated absorbance measurements indicated by a solid line. Absorbance measurements are expressed at a 260nm wavelength. Deviation from the theoretical value at higher absorbance values is a result of stray light interference within the spectrometer.

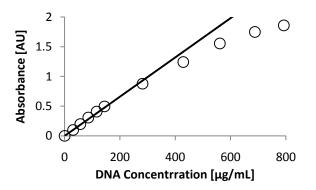


Figure 1: Measured versus Theoretical Absorbance

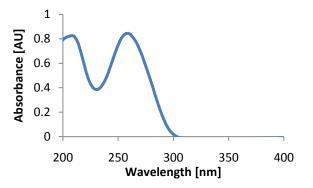


Figure 2: Typical DNA Measurement (281.6µg/mL)