World Precision Instruments

Search the site by KEYWORD


Quick Finder


Testimonials

John Dolan, University of Hertfordshire

Julian at WPI provides excellent service and advice. Nothing is too much trouble.
read more

FD223a

FD223a

Dual Channel Differential Electrometer



Choose Quantity
  • Overview
  • Specifications
  • Accessories
  • Citations
  • Related Products

Overview

FD223a Dual Channel Differential Electrometer

There are 1 images available to view - click to enlarge and scroll through the product gallery.

FD223a Datasheet
/ Download as PDF

FD223a Instruction Manual
/ Download as PDF

Electrochemical measurements with ion specific electrodes

  • Dual channel with very high input impedance
  • Separate outputs for Channel A, B and A-B (Differential)
  • Independent DC offset controls
  • Test port
  • Standby mode

Benefits

  • Measure changes in intracellular ion content electrochemically
  • Stable and drift free
  • Excellent amplification with low noise
  • Driven guard shield for reduced noise and stray capacitance
  • Set probe leakage current

Applications

  • Measure intracellular ion concentrations for K+, Ca2+, H+ and other species

FD223A Dual Channel Differential Intracellular Amplifier

The FD223a is a dual differential, high impedance amplifier/electrometer designed specifically for electrochemical measurements using ion specific (K+, Na+, Cl-, etc.) or pH glass microelectrodes.

The instrument is very stable, drift free, and features a built in provision for measuring and adjusting input leakage current. DC levels may be independently adjusted for each probe channel.

The ability to locate the sensing probes directly at the measurement site overcomes the noise introduced by the long cables usually needed to bring the measured potential to the instrument. Signal-driven guards at the probe input maintains the specified high resistance and reduces the stray capacitance of the probes.

Careful design, coupled with quality component selection, particularly in the headstage, results in an excellent amplifier with low noise and wide bandwidth. The FD223a will faithfully reproduce the measured signal.

To reduce the noise and stray capacity even farther the probe housing includes a signal driven guard. A portion of this inner driven shell is exposed at the probe tip allowing a spring shield to be extended over the electrode holder and microelectrode.

Specifications

Input Impedance > 1015 Ω, shunted by 0.5 pF
Input Capacitance 1 pF, nominal
Leakage Current 75 fA max
Gain 1.000 ± 0.1%
Output Resistance 50 Ω
Input Swing Voltage ±10 V
Rise Time (10 to 90%) 5 µs, small signal
Noise (0.1 Hz to 10 kHz)  
Baseline Stability ±0.1 mV/day
Position Controls Range ±600 mV
Physical Dimensions Case: 8.8 x 21.0 x 17.5 cm (H x W x D)
Probe:12.7 x 65 mm (D x L), 1.8 m cable
Power 90-265 VAC, 50/60 Hz, 10 VA
Probe Handle 6.5 x 65 mm (D x L)
Shipping Weight 2.5 kg
Operating Conditions Equipment is intended to be operated in a controlled laboratory environment. Temperature: 0-40°C; altitude: sea level to 2000 m; relative humidity: 0-95%.

Accessories


Choose Quantity
FD223AP

FD223AP

Replacement probe for FD223A (includes calibration)

View details...


Choose Quantity
2547

2547

Driven guard shield for FD223AP probe

View details...


Choose Quantity
M-3

M-3

Tilting Base. Adjustable to 80 degrees. 5.1"x 0.25"x 2.3" (60 x 130 x 6mm)

View details...

Citations

Interactions of Aging and Hydrogen Peroxide on Pulmonary Vein Electrical Activity: Implications in the Pathophysiology of Atrial Fibrillation | Request PDF. (n.d.). Retrieved November 27, 2018, from https://www.researchgate.net/publication/265121078_Interactions_of_Aging_and_Hydrogen_Peroxide_on_Pulmonary_Vein_Electrical_Activity_Implications_in_the_Pathophysiology_of_Atrial_Fibrillation

MacMillan, H. A., Andersen, J. L., Davies, S. A., & Overgaard, J. (2016). The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Scientific Reports, 5(1), 18607. https://doi.org/10.1038/srep18607

Fernandes de Lima, V. M., Piqueira, J. R. C., & Hanke, W. (2015). The Tight Coupling and Non-Linear Relationship between the Macroscopic Electrical and Optical Concomitants of Electrochemical CNS Waves Reflect the Non-Linear Dynamics of Neural Glial Propagation. Open Journal of Biophysics, 05(01), 1–20. https://doi.org/10.4236/ojbiphy.2015.51001

Yoshida, T., Nin, F., Ogata, G., Uetsuka, S., Kitahara, T., Inohara, H., … Hibino, H. (2015). NKCCs in the fibrocytes of the spiral ligament are silent on the unidirectional K+ transport that controls the electrochemical properties in the mammalian cochlea. Pflügers Archiv - European Journal of Physiology, 467(7), 1577–1589. https://doi.org/10.1007/s00424-014-1597-9

Argenziano, M., Tiscornia, G., Moretta, R., Amorena, C. E., & García Gras, E. (2014). Hormonal Control of Cardiac Action Potential Phase 1 Currents in the Brugada Syndrome. Argentine Journal of Cardiology, 82(4), 310–315. https://doi.org/10.7775/ajc.82.4.3885

Altamirano, F., Eltit, J. M., Robin, G., Linares, N., Ding, X., Pessah, I. N., … López, J. R. (2014). Ca 2+ Influx via the Na + /Ca 2+ Exchanger Is Enhanced in Malignant Hyperthermia Skeletal Muscle. Journal of Biological Chemistry, 289(27), 19180–19190. https://doi.org/10.1074/jbc.M114.550764

Adachi, N., Yoshida, T., Nin, F., Ogata, G., Yamaguchi, S., Suzuki, T., … Kurachi, Y. (2013). The mechanism underlying maintenance of the endocochlear potential by the K + transport system in fibrocytes of the inner ear. The Journal of Physiology, 591(18), 4459–4472. https://doi.org/10.1113/jphysiol.2013.258046

RODRIGO-MORENO, A., ANDRÉS-COLÁS, N., POSCHENRIEDER, C., GUNSÉ, B., PEÑARRUBIA, L., & SHABALA, S. (2013). Calcium- and potassium-permeable plasma membrane transporters are activated by copper in Arabidopsis root tips: linking copper transport with cytosolic hydroxyl radical production. Plant, Cell & Environment, 36(4), 844–855. https://doi.org/10.1111/pce.12020

Tsai, W.-C., Yang, L.-Y., Chen, Y.-C., Kao, Y.-H., Lin, Y.-K., Chen, S.-A., … Chen, Y.-J. (2013). Ablation of the Androgen Receptor Gene Modulates Atrial Electrophysiology and Arrhythmogenesis With Calcium Protein Dysregulation. Endocrinology, 154(8), 2833–2842. https://doi.org/10.1210/en.2012-2265

Rangroo Thrane, V., Thrane, A. S., Wang, F., Cotrina, M. L., Smith, N. A., Chen, M., … Nedergaard, M. (2013). Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nature Medicine, 19(12), 1643–1648. https://doi.org/10.1038/nm.3400

Chang, C.-J., Chen, Y.-C., Lin, Y.-K., Huang, J.-H., Chen, S.-A., & Chen, Y.-J. (2013). Rivaroxaban modulates electrical and mechanical characteristics of left atrium. Journal of Biomedical Science, 20(1), 17. https://doi.org/10.1186/1423-0127-20-17

Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S., & Farmer, E. E. (2013). GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature, 500(7463), 422–426. https://doi.org/10.1038/nature12478

Lin, Y.-K., Lai, M.-S., Chen, Y.-C., Cheng, C.-C., Huang, J.-H., Chen, S.-A., … Lin, C.-I. (2012). Hypoxia and reoxygenation modulate the arrhythmogenic activity of the pulmonary vein and atrium. Clinical Science, 122(3), 121–132. https://doi.org/10.1042/CS20110178

Boncompagni, S., Moussa, C. E.-H., Levy, E., Pezone, M. J., Lopez, J. R., Protasi, F., & Shtifman, A. (2012). Mitochondrial Dysfunction in Skeletal Muscle of Amyloid Precursor Protein-overexpressing Mice. Journal of Biological Chemistry, 287(24), 20534–20544. https://doi.org/10.1074/jbc.M112.359588

Tsai, W.-C., Chen, Y.-C., Lin, Y.-K., Chen, S.-A., & Chen, Y.-J. (2011). Sex Differences in the Electrophysiological Characteristics of Pulmonary Veins and Left Atrium and Their Clinical Implication in Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 4(4), 550–559. https://doi.org/10.1161/CIRCEP.111.961995

Lee, S., & Choi, I. (2011). Sodium-bicarbonate cotransporter NBCn1/Slc4a7 inhibits NH 4 Cl-mediated inward current in  Xenopus  oocytes. Experimental Physiology, 96(8), 745–755. https://doi.org/10.1113/expphysiol.2011.057844

Musa-Aziz, R., Boron, W. F., & Parker, M. D. (2010). Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Methods, 51(1), 134–145. https://doi.org/10.1016/j.ymeth.2009.12.012

Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., … Yurin, V. (2010). Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. Journal of Cell Science, 123(9), 1468–1479. https://doi.org/10.1242/jcs.064352

Zimmermann, M. R., Maischak, H., Mithöfer, A., Boland, W., & Felle, H. H. (2009). System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiology, 149(3), 1593–1600. https://doi.org/10.1104/pp.108.133884

Lima, V. M. F. de, Piqueira, J. R. C., & Hanke, W. (2009). The synergetic modulation of the excitability of central gray matter by a neuropeptide: two protocols using excitation waves in chick retina. Anais Da Academia Brasileira de Ciencias, 81(1), 39–49. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19274330

Felle, H. H., Waller, F., Molitor, A., & Kogel, K.-H. (2009). The Mycorrhiza Fungus Piriformospora indica Induces Fast Root-Surface pH Signaling and Primes Systemic Alkalinization of the Leaf Apoplast Upon Powdery Mildew Infection. Molecular Plant-Microbe Interactions, 22(9), 1179–1185. https://doi.org/10.1094/MPMI-22-9-1179

Coulon, P., Wüsten, H.-J., Hochstrate, P., & Dierkes, P. W. (2008). Swelling-activated chloride channels in leech Retzius neurons. The Journal of Experimental Biology, 211(Pt 4), 630–641. https://doi.org/10.1242/jeb.008565

Loriol, C., Dulong, S., Avella, M., Gabillat, N., Boulukos, K., Borgese, F., & Ehrenfeld, J. (2008). Characterization of SLC26A9, Facilitation of Cl- Transport by Bicarbonate. Cellular Physiology and Biochemistry, 22(1–4), 015–030. https://doi.org/10.1159/000149780

Felle, H. H., Herrmann, A., Schäfer, P., Hückelhoven, R., & Kogel, K.-H. (2008). Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana. Journal of Plant Physiology, 165(1), 52–59. https://doi.org/10.1016/j.jplph.2007.08.006

Chang, S.-L., Chen, Y.-C., Chen, Y.-J., Wangcharoen, W., Lee, S.-H., Lin, C.-I., & Chen, S.-A. (2007). Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart, 93(1), 82–88. https://doi.org/10.1136/hrt.2006.089359

FELLE, H. H. (2006). Apoplastic pH During Low-oxygen Stress in Barley. Annals of Botany, 98(5), 1085–1093. https://doi.org/10.1093/aob/mcl193

WONGCHAROEN, W., CHEN, Y., CHEN, Y., CHANG, C., YEH, H., LIN, C., & CHEN, S. (2006). Effects of a Na+/Ca2+ exchanger inhibitor on pulmonary vein electrical activity and ouabain-induced arrhythmogenicity. Cardiovascular Research, 70(3), 497–508. https://doi.org/10.1016/j.cardiores.2006.02.026

Binder, D. K., Yao, X., Zador, Z., Sick, T. J., Verkman, A. S., & Manley, G. T. (2006). Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia, 53(6), 631–636. https://doi.org/10.1002/glia.20318

Trischitta, F., Denaro, M. G., & Faggio, C. (2004). Ion transport in the intestine ofGobius niger in both isotonic and hypotonic conditions. Journal of Experimental Zoology, 301A(1), 49–62. https://doi.org/10.1002/jez.a.20002

Kakigi, A., Okada, T., Takeda, T., Takeuchi, S., Sawada, S., Higashiyama, K., … Seguchi, H. (2004). Endocytosis in the Epithelial Cells of the Endolymphatic Sac. ACTA HISTOCHEMICA ET CYTOCHEMICA, 37(4), 241–245. https://doi.org/10.1267/ahc.37.241

Setiawan*, I., Henke*, G., Feng, Y., Böhmer, C., Vasilets, L. A., Schwarz, W., & Lang, F. (2002). Stimulation of Xenopus oocyte Na+,K+ATPase by the serum and glucocorticoid-dependent kinase sgk1. Pflügers Archiv, 444(3), 426–431. https://doi.org/10.1007/s00424-002-0823-z

Huang, P., Lazarowski, E. R., Tarran, R., Milgram, S. L., Boucher, R. C., & Stutts, M. J. (2001). Compartmentalized autocrine signaling to cystic fibrosis transmembrane conductance regulator at the apical membrane of airway epithelial cells. Proceedings of the National Academy of Sciences, 98(24), 14120–14125. https://doi.org/10.1073/pnas.241318498

Boron, W. F., Choi, I., Aalkjaer, C., & Boulpaep, E. L. (2000). An electroneutral sodium/bicarbonate cotransporter NBCn1 and associated sodium channel. Nature, 405(6786), 571–575. https://doi.org/10.1038/35014615

Felle, H. H. (1994). The H+/Cl- Symporter in Root-Hair Cells of Sinapis alba (An Electrophysiological Study Using Ion-Selective Microelectrodes). Plant Physiology, 106(3), 1131–1136. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12232395

Lai, Z. F., Hotokebuchi, N., Cragoe, E. J., & Nishi, K. (1994). Effects of 5-(N,N-hexamethylene)amiloride on action potentials, intracellular Na, and pH of guinea pig ventricular muscle in vitro. Journal of Cardiovascular Pharmacology, 23(2), 259–267. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7511756

Thaler, M., Simonis, W., & Schönknecht, G. (1992). Light-Dependent Changes of the Cytoplasmic H and Cl Activity in the Green Alga Eremosphaera viridis. Plant Physiology, 99(1), 103–110. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16668835

Thaler, M., Simonis, W., & Schönknecht, G. (1992). Light-Dependent Changes of the Cytoplasmic H and Cl Activity in the Green Alga Eremosphaera viridis. Plant Physiology, 99(1), 103–110. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16668835

Wright, J. P., Fisher, D. B., Kelling, F., Furch, A. C. U., Gaupels, F., & Bel, A. J. E. van. (1981). Measurement of the Sieve Tube Membrane Potential. PLANT PHYSIOLOGY, 67(4), 845–848. https://doi.org/10.1104/pp.67.4.845   

 

RelatedItems

705

705

Electro 705 Electrometer

View details...

773

773

Duo 773 Electrometer intracellular Amplifier

View details...

Our Clients Include:

GlaxoSmithKline
University College London
Novartis
Imperial College
University of Cambridge
University of Oxford

Keep in Touch

We promise NEVER to share your details with anyone. You can opt out at any time.