World Precision Instruments

Search the site by KEYWORD


Quick Finder


Testimonials

Dr Andy MacKenzie, University of the West of Scotland

I have had dealings with WPI for several years and have consistently found their customer service to be second-to-none. They have always provided fast and insightful responses to any technical query and such support has been of enormous help to my laboratory.
read more

AL-1060

AL-1060

Aladdin SyringeONE:173 High Flow Programmable Syringe Pump



Choose Quantity
  • Overview
  • Specifications
  • Accessories
  • Citations
  • Related Products

Overview

Aladdin-220 Syringe Pump

There are 1 images available to view - click to enlarge and scroll through the product gallery.

AL-1060 Instruction Manual
/ Download as PDF

 

  • Automatic dispensing of small volumes

  • Very precise, reproducible flow rate control

  • Displays total volume dispensed in mL or µL units

  • Selectable infusion/withdrawal rate units (mL/hr, µL/hr, mL/min, µL/min)

  • Infusion rate can be changed while pumping

  • Program pump via keypad or from a computer

  • Highly controllable – program sequences without a computer (holds up to 41 programming phases)

  • Network, control, and monitor up to 100 pumps with one computer

  • Hands-free operation with optional foot switch ADPT2

  • Motor stall detection

Channels 1
Type Infusion / Withdrawal
Flow Range 0.005 µL/hr (0.5 µL syringe) to 1961 mL/min (140 mL syringe)
Dispensing Accuracy ±1%
Syringe Sizes Accepted 0.5 µL to 60 mL or 140 mL partially filled
Linear Force 15 lb at low speed; 5 lb at maximum speed

 

To meet the demands of a busy lab Aladdin Pumps offer exceptional value providing versatility and reliability for accurately dispensing media down into the nanoliter range.

The Aladdin AL-1060 is a programmable single channel infusion / withdrawal syringe pump. It has a metal casing to provide stability, ensuring less vibration is transferred to the syringes. Setup is easy using the pumps keypad or via a computer with optional PC to pump cable (GN-PC7 or GN-PC25).

The Aladdin AL-1060 can run complex programs with up to 41 pumping phases can be set to change pumping rates; set dispensing volumes; insert pauses; control and respond to external signals; sound the buzzer. (For Linear/Gradient programs use AL-1060X)

Example flow rates

Syringe Size Maximum Rate Minimum Rate
0.5 µL 864.7 µL/hr 0.005 µL/hr
1 mL 29.99 mL/min 9.977 µL/hr
3 mL 100.1 mL/min 33.31 µL/hr
5 mL 195.3 mL/min 64.96 µL/hr
10 mL 282.8 mL/min 94.09 µL/hr
20 mL 493.0 mL/min 164.0 µL/hr
30 mL 633.2 mL/min 210.7 µL/hr
60 mL 960.5 mL/min 319.5 µL/hr
140 mL 1961 mL/min 653.0 µL/hr

 

Specifications

SYRINGE SIZES up to 60 mL (140 mL partially filled)
NUMBER OF SYRINGES 1
MOTOR TYPE Step Motor, 1/8 to 1 step modes
STEPS PER REVOLUTIONS 200
STEPPING (max. min.) 2.9104167 µm to 23.283333 µm depending on motor speed
MOTOR TO DRIVE SCREW RATIO 44/15
SPEED(max./min.) 173.0477419 cm/min / 0.05755463 cm/hr
PUMPING RATES 960.5 mL/min with 60mL syringe, to 9.977 µL/hr with 1mL syringe
MAXIMUM FORCE 15 lb at min. speed, 5 lb at max. speed
NUMBER OF PROGRAM PHASES 41
RS-232 PUMP NETWORK 100 pumps maximum
POWER SUPPLY Wall adapter 24V DC @ 1000mA
DIMENSIONS 22.9 x 14.6 x 11.4 cm (8.75 x 5.75 x 4.5 in.)
WEIGHT 1.6 kg (3.6 lb)

 
 

Accessories


Choose Quantity
GN-NET7

GN-NET7

Pump-to-pump Network Cable, 7 ft for Aladdin series pumps

View details...


Choose Quantity
GN-NET25

GN-NET25

Pump-to-pump Network Cable, 25 ft for Aladdin series pumps

View details...


Choose Quantity
GN-PC25

GN-PC25

PC to pump cable, 25 ft for Aladdin series pumps

View details...


Choose Quantity
ADPT2

ADPT2

Footswitch for Aladdin programmable syringe pumps

View details...


Choose Quantity
GN-PC7

GN-PC7

PC to pump cable, 7 ft for Aladdin series pumps

View details...

Citations

Birngruber, T., & Ghosh, A. (2013). Cerebral open flow microperfusion: A new in vivo technique for continuous measurement of substance transport across the intact blood–brain barrier. Clinical and  …. Retrieved from https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.12174/full

Ferreira, D., Reis, R., & Azevedo, H. (2013). Peptide-based microcapsules obtained by self-assembly and microfluidics as controlled environments for cell culture. Soft Matter. Retrieved from https://pubs.rsc.org/EN/content/articlehtml/2013/sm/c3sm51189h

Herricks, T., Avril, M., Janes, J., Smith, J., & Rathod, P. (2013). Clonal Variants of Plasmodium falciparum Exhibit a Narrow Range of Rolling Velocities to Host Receptor CD36 under Dynamic Flow Conditions. Eukaryotic cell. Retrieved from https://ec.asm.org/content/12/11/1490.short

Maya, H., Vincent, M., & Nötzli, S. (2013). Increased porosity of electrospun hybrid scaffolds improved bladder tissue regeneration. …  Research Part A. Retrieved from https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.34889/full

Tõnurist, K., Thomberg, T., & Jänes, A. (2013). Polymorphic Behavior and Morphology of Electrospun Poly (Vinylidene Fluoride) Separator Materials for Non-Aqueous Electrolyte Based Electric Double Layer. ECS  …. Retrieved from https://ecst.ecsdl.org/content/50/45/49.short

Tõnurist, K., Thomberg, T., Jänes, A., & Lust, E. (2013). Specific Performance of Electrical Double–Layer Capacitors Based on Different Separator Materials and Non–Aqueous Electrolytes. ECS Transactions. Retrieved from https://ecst.ecsdl.org/content/50/43/181.short

Zander, N., & Orlicki, J. (2013). Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. Journal of Materials  …. Retrieved from https://link.springer.com/article/10.1007/s10856-012-4771-7

Zhang, J., Jiang, D., & Peng, H. (2014). A pressurized filtration technique for fabricating carbon nanotube buckypaper: Structure, mechanical and conductive properties. Microporous and Mesoporous Materials. Retrieved from https://www.sciencedirect.com/science/article/pii/S1387181113005192

Zhang, J., Jiang, D., Peng, H., & Qin, F. (2013). Enhanced mechanical and electrical properties of carbon nanotube buckypaper by in situ cross-linking. Carbon. Retrieved from https://www.sciencedirect.com/science/article/pii/S000862231300568X

RelatedItems

SPLG100

SPLG100

Legato 100 Single Syringe Infuse Only

View details...

Our Clients Include:

GlaxoSmithKline
University College London
Novartis
Imperial College
University of Cambridge
University of Oxford

Keep in Touch

We promise NEVER to share your details with anyone. You can opt out at any time.