World Precision Instruments

Search the site by KEYWORD

Quick Finder


Dr Gary Lawrence, Dublin City University

WPI are my preferred supplier for tissue and cell recording instrumentation. In my experience, WPI representatives have an excellent level of technical expertise and they have always responded in a timely manner with the most helpful, patient and instructive advice to aid the development of the o...
read more



Ventilator for small animals

  • Overview
  • Specifications
  • Accessories
  • Citations
  • Related Products


CW-SAR-830/AP small animal ventilator

There are 1 images available to view - click to enlarge and scroll through the product gallery.

Data Sheet
/ Download as PDF

  • Pressure or volume-cycled
  • Pressure cycling prevents hyperinflation of tiny animal lungs
  • External lung pressure monitoring in pressure-cycling mode
  • Wide tidal volume and rate range
  • Internal air pump


The Small Animal Ventilator, suitable for a mouse or guinea pig, operates as either a volume or pressure-cycled ventilator, meaning that it dispenses a designated volume of air with each breath or it ventilates until a designated lung pressure is reached. Pressure-cycled ventilation prevents hyper-inflation of small animal lungs. When the ventilator operates in Volume mode, it dispenses a known airflow into the lungs for a set inspiratory time to generate the desired tidal volumes. The three controls – respiratory rate, inspiratory time and flow rate – allow for accuracy and extraordinary flexibility over a wide range of volumes, breaths-per-minute and I/E ratios. When the ventilator operates in Pressure mode, a built-in solid-state transducer monitors airway pressure. Simply set the desired end-inspiratory pressure. During inspiration, airflow is introduced into the lungs until this pressure is reached, at which point inspiration is terminated. This mode is especially useful for tiny animals, where hyperinflation of the lungs is a danger. An output voltage corresponding to airway pressure is provided for external monitoring or recording.

The SAR-830/AP ventilator comes with an internal air pump, but it can also connect with an external pressurized air or gas source for operation. This can be any suitable breathing gas within the required pressure range or the output from an anesthesia machine. It is compatible with inhalation anesthetics and oxygen. This unit may be expanded to ventilate larger animals or multiple small animals simultaneously by adding external valve assemblies. A metered flow source is required for each external valve assembly. These valves are available for animals ranging in size from mice to large dogs.


Respiratory rate range 5-200 breaths/min
Tidal Volume range * 0.2 - 35ml
Inspiration time range 0-5.00 seconds
Inspiratory flow rate range 0-1000 ml/min
Pressure control range 0-50.0 cmH2O
Analog rate output voltage 10mV/breath/min
Analog pressure output voltage 50mV/cmH2O
Logic Sync Out voltage 5V (TTL)
Power requirements 120/240VAC, selectable
Input pressure range ** 3-20 psi
Dimensions 9Wx5.5Hx9D in(23x14x23 cm)


*Using internal valves. External valve assemblies available for larger animals.
** No pressure source required for model SAR



Ayata, C., Shin, H., & Dileköz, E. (2013). Hyperlipidemia disrupts cerebrovascular reflexes and worsens ischemic perfusion defect. Journal of Cerebral  …. Retrieved from

Capone, C., Faraco, G., & Coleman, C. (2012). Endothelin 1–dependent neurovascular dysfunction in chronic intermittent hypoxia. …. Retrieved from

Chen, C., Tsai, P., & Huang, C. (2013). Minocycline ameliorates lung and liver dysfunction in a rodent model of hemorrhagic shock/resuscitation plus abdominal compartment syndrome. Journal of Surgical Research. Retrieved from

Constantin, S. (2013). In Vivo Recordings of GnRH Neuron Firing Reveal Heterogeneity and Dependence upon GABAA Receptor Signaling. The Journal of  …. Retrieved from

Duque, D., & Pérez-González, D. (2012). Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. The Journal of  …. Retrieved from

Erbayraktar, Z., & Gökmen, N. (2013). Experimental Traumatic Spinal Cord Injury. Tissue-Protective  …. Retrieved from

Faraco, G., Moraga, A., Moore, J., & Anrather, J. (2013). Circulating Endothelin-1 Alters Critical Mechanisms Regulating Cerebral Microcirculation. …. Retrieved from

Hibert, P., & Prunier-Mirebeau, D. (2013). Apolipoprotein AI Is a Potential Mediator of Remote Ischemic Preconditioning. PloS one. Retrieved from

Hoffmann, U. (2012). Glucose modulation of spreading depression susceptibility. Journal of Cerebral  …. Retrieved from

Hoffmann, U., & Sukhotinsky, I. (2012). Increased glucose availability does not restore prolonged spreading depression durations in hypotensive rats without brain injury. Experimental  …. Retrieved from

Huang, C., Han, X., Li, X., & Lam, E. (2012). Critical role of connexin 43 in secondary expansion of traumatic spinal cord injury. The Journal of  …. Retrieved from

Jeanneteau, J., & Hibert, P. (2012). Microparticle release in remote ischemic conditioning mechanism. American Journal of …. Retrieved from

Kang, K., Coggins, M., Xiao, C., Rosenzweig, A., & Bischoff, J. (2013). Human vasculogenic cells form functional blood vessels and mitigate adverse remodeling after ischemia reperfusion injury in rats. Angiogenesis. Retrieved from

Lai, H., Younce, J., Albaugh, D., Kao, Y., & Shih, Y. (2014). Functional MRI reveals frequency-dependent responses during deep brain stimulation at the subthalamic nucleus or internal globus pallidus. NeuroImage. Retrieved from

Looij, Y. Van De, & Mauconduit, F. (2012). Diffusion tensor imaging of diffuse axonal injury in a rat brain trauma model. NMR in  …. Retrieved from

Reznichenko, L., Cheng, Q., & Nizar, K. (2012). In vivo alterations in calcium buffering capacity in transgenic mouse model of synucleinopathy. The Journal of  …. Retrieved from

Shin, H., Huang, P., & Ayata, C. (2013). Rho-kinase inhibition improves ischemic perfusion deficit in hyperlipidemic mice. Journal of Cerebral Blood Flow &  …. Retrieved from

Strohmaier, C., Reitsamer, H., & Kiel, J. (2013). Episcleral Venous Pressure and IOP Responses to Central Electrical Stimulation in the Rat. Investigative ophthalmology & visual …. Retrieved from

Tang, H., Lee, M., & Khuong, A. (2012). Diaphragm muscle atrophy in mouse following long-term mechanical ventilation. Muscle &  …. Retrieved from

Zhang, Y., Yang, L., & Yang, Y. (2013). Low-dose taurine upregulates taurine transporter expression in acute myocardial ischemia. International  …. Retrieved from




MRI-Compatible Ventilator for small animals

View details...



Ventilator for small animals

View details...

Our Clients Include:

University College London
Imperial College
University of Cambridge
University of Oxford

Keep in Touch

We promise NEVER to share your details with anyone. You can opt out at any time.